Publicado
Theoretical investigation of Hydrogen sulfide adsorption on doped phthalocyanine nanosheets: DFT calculations
Investigación teórica de la adsorción de sulfuro de hidrógeno en nanohojas de ftalocianina dopadas: cálculos DFT
DOI:
https://doi.org/10.15446/dyna.v93n240.120827Palabras clave:
Hydrogen Sulfide (H2S), Phthalocyanine, Density Functional Theory (DFT), Gas Sensing, Metal Doping (en)sulfuro de hidrógeno (H₂S), ftalocianina, teoría del funcional de la densidad (DFT), detección de gases, dopaje de metales (es)
Descargas
Density functional theory (DFT) computations of phthalocyanine (MePc) monolayers. Utilizing the B3LYP functional alongside a 6-311+G(d,p) basis set, we conducted comprehensive optimization of the molecular structures to evaluate their stability and electrical characteristics. The binding energy between the central metal and the phthalocyanine monolayer was computed, together with the adsorption energy of H₂S, to assess the feasibility for gas sensing applications. Our results demonstrate that the adsorption process is primarily spontaneous, with considerable charge transfer occurring during adsorption, as confirmed by Hirshfeld charge calculations. Furthermore, we examined the band-gap energy, global hardness, and electrophilicity index to further the characterization of the sensing capabilities of both pristine and metal-doped phthalocyanine structures. The findings indicate that metal doping improves the sensitivity and stability of phthalocyanine monolayers, making them viable candidates for H₂S detection across diverse applications. This study examines the adsorption characteristics of hydrogen sulfide (H₂S) on metal-doped materials.
Cálculos de la teoría del funcional de la densidad (DFT) de monocapas de ftalocianina (MePc). Utilizando el funcional B3LYP junto con un conjunto de bases 6-311+G(d,p), realizamos una optimización exhaustiva de las estructuras moleculares para evaluar su estabilidad y características eléctricas. Se calculó la energía de enlace entre el metal central y la monocapa de ftalocianina, junto con la energía de adsorción de H₂S, para evaluar su viabilidad en aplicaciones de detección de gases. Nuestros resultados demuestran que el proceso de adsorción es principalmente espontáneo, con una considerable transferencia de carga durante la adsorción, como lo confirman los cálculos de carga de Hirshfeld. Además, examinamos la energía de banda prohibida, la dureza global y el índice de electrofilicidad para profundizar en la caracterización de las capacidades de detección de estructuras de ftalocianina, tanto prístinas como dopadas con metal. Los hallazgos indican que el dopaje con metal mejora la sensibilidad y la estabilidad de las monocapas de ftalocianina, lo que las convierte en candidatas viables para la detección de H₂S en diversas aplicaciones. Este estudio examina las características de adsorción del sulfuro de hidrógeno (H₂S) en materiales dopados con metal.
Referencias
[1] Ganji, M.D., and Danesh, N., Adsorption of H₂S molecules by cucurbit [7] uril: an ab initio vdW-DF study. RSC Advances, 3(44), pp. 22031-22038, 2013. DOI: https://doi.org/10.1039/c3ra41946k.
[2] Drummer, O.H., Disposition of toxic drugs and chemicals in man. Australian Journal of Forensic Sciences, 41(2), p. 163, 2009. DOI: https://doi.org/10.1080/00450610903019561.
[3] Shefa, U., Kim, M.S., Jeong, N.Y., and Jung, J., Antioxidant and cell-signaling functions of hydrogen sulfide in the central nervous system. Oxidative medicine and cellular longevity, Art. 1873962, 2018. DOI: https://doi.org/10.1155/2018/1873962.
[4] Lashgari, M., and Ghanimati, M., Photocatalytic degradation of H₂S aqueous media using sulfide nanostructured solid-solution solar-energy-materials to produce hydrogen fuel. Journal of Hazardous Materials, 345, pp. 10-17, 2018. DOI: https://doi.org/10.1016/j.jhazmat.2017.10.062.
[5] Ayesh, A.I., et al., Selective gas sensors using graphene and CuO nanorods. Sensors and Actuators A: Physical, 283, pp. 107-112, 2018. DOI: https://doi.org/10.1016/j.sna.2018.09.068.
[6] [6] Sharma, S., and Verma, A.S., A theoretical study of H₂S adsorption on graphene doped with B, Al and Ga. Physica B: Condensed Matter, 427, pp. 12-16, 2013. DOI: https://doi.org/10.1016/j.physb.2013.05.019.
[7] Zhang, R., Lu, L., Chang, Y., and Liu, M., Gas sensing based on metal-organic frameworks: concepts, functions, and developments. Journal of Hazardous Materials, 429, Art. 128321, 2022. DOI: https://doi.org/10.1016/j.jhazmat.2022.128321.
[8] Jin, L., and Chen, D., Enhancement in photovoltaic performance of phthalocyanine-sensitized solar cells by attapulgite nanoparticles. Electrochimica, 72, pp. 40-45, 2012. DOI: https://doi.org/10.1016/j.electacta.2012.03.167.
[9] Darwish, A.A.A., et al., Linear and nonlinear optical characteristics of manganese phthalocyanine chloride/polyacetate sheet: Towards flexible optoelectronic devices. Optical Materials, 114, Art. 110988, 2021. DOI: https://doi.org/10.1016/j.optmat.2021.110988.
[10] Huang, S., Chen, K., and Li, T.T., Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis. Coordination Chemistry Reviews, 464, Art. 214563, 2022. DOI: https://doi.org/10.1016/j.ccr.2022.214563.
[11] Zemła, M.R., Czelej, K., and Majewski, J.A., Graphene−iron (II) phthalocyanine hybrid systems for scalable molecular spintronics. The Journal of Physical Chemistry C, 124(50), pp. 27645-27655, 2020. DOI: https://doi.org/10.1021/acs.jpcc.0c06949.
[12] Alosabi, A.Q., Al-Muntaser, A.A., El-Nahass, M.M., and Oraby, A.H., Structural, optical and DFT studies of disodium phthalocyanine thin films for optoelectronic devices applications. Optics & Laser Technology, 155, 108372, 2022. DOI: https://doi.org/10.1016/j.optlastec.2022.108372.
[13] Zhou, Y., Gao, G., Chu, W., and Wang, L.W., Computational screening of transition metal-doped phthalocyanine monolayers for oxygen evolution and reduction. Nanoscale Advances, 2(2), pp. 710-716, 2020. DOI: https://doi.org/10.1039/c9na00648f.
[14] Chaabene, M., et al., Insights into theoretical detection of CO2, NO, CO, O2, and O3 gases molecules using Zinc phthalocyanine with peripheral mono and tetra quinoleinoxy substituents: Molecular geometries, Electronic properties, and Vibrational analysis. Chemical Physics, 547, Art. 111198, 2021. DOI: https://doi.org/10.1016/j.chemphys.2021.111198.
[15] Long, D.B., et al., Two-dimensional bimetal-embedded expanded phthalocyanine monolayers: a class of multifunctional materials with fascinating properties. Advanced Functional Materials, 34(22), art. 2313171, 2024. DOI: https://doi.org/10.1002/adfm.202313171.
[16] Badran, H.M., Eid, K.M., Al-Nadary, H.O., and Ammar, H.Y., DFT-D3 and TD-DFT Studies of the Adsorption and Sensing Behavior of Mn-Phthalocyanine toward NH3, PH3, and AsH3 Molecules. Molecules, 29(10), art. 2168, 2024. DOI: https://doi.org/10.3390/molecules29102168.
[17] Resan, S., Hameed, R., Bahrani, F., and Al-Anber, M., Nonlinear optical response of anthracene as a D-π-A conjugated system: Quantum computation study. In: AIP Conference Proceedings, AIP Publishing, 2023. DOI: https://doi.org/10.1063/5.0163185.
[18] Becke, A.D., Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of Chemical Physics, 96(3), pp. 2155-2160, 1992. DOI: https://doi.org/10.1063/1.462066.
[19] Frisch, M.J., Pople, J.A., and Binkley, J.S., Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. The Journal of Chemical Physics, 80(7), pp. 3265-3269, 1984. DOI: https://doi.org/10.1063/1.447079.
[20] Jia, X., Zhang, H., Zhang, Z., and An, L., First-principles investigation of vacancy-defected graphene and Mn-doped graphene towards adsorption of H₂S. Superlattices and Microstructures, 134, art. 106235, 2019. DOI: https://doi.org/10.1016/j.spmi.2019.106235.
[21] Sato, T., and Nakai, H., Density functional method including weak interactions: dispersion coefficients based on the local response approximation. The Journal of Chemical Physics, 131(22), art. 224104, 2009. DOI: https://doi.org/10.1063/1.3270198.
[22] Frisch, M.J., et al., Gaussian 16, Revision C.01. Gaussian, Inc., Wallingford CT, 2016.
[23] Al-Anber, M., Al-Mowali, A., and Ali, A., Theoretical semiempirical study of the nitrone (anticancer drug) interaction with fullerene C60 (as delivery). Acta Physica Polonica A, 126(3), pp. 845-848, 2014. DOI: https://doi.org/10.12693/APhysPolA.126.845.
[24] Dennington, R., Keith, T., and Millam, J., GaussView, Version 5. Semichem Inc., Shawnee Mission, KS, 2009.
[25] Vinod, H.D., Review of GAUSS for Windows, including its numerical accuracy. Journal of Applied Econometrics, 15(2), pp. 211-220, 2000. DOI: https://doi.org/10.1002/(SICI)1099-1255(200003/04)15:2<211::AID-JAE573>3.0.CO;2-4.
[26] Resan, S., Hameed, R., Al-Hilo, A., and Al-Anber, M., The impact of torsional angles to tune the nonlinear optical response of chalcone molecule: Quantum computational study. Revista Cubana de Física, 37(2), pp. 95-100, 2020.
[27] Wang, C., Wang, Y., Guo, Q., Dai, E., and Nie, Z., Metal-decorated phthalocyanine monolayer as a potential gas sensing material for phosgene: a first-principles study. ACS Omega, 7(25), pp. 21994-22002, 2022. DOI: https://doi.org/10.1021/acsomega.2c02548.
[28] Yong, Y., Cui, H., Zhou, Q., Su, X., Kuang, Y., and Li, X., C2N monolayer as NH3 and NO sensors: a DFT study. Applied Surface Science, 487, pp. 488-495, 2019. DOI: https://doi.org/10.1016/j.apsusc.2019.05.040.
[29] Ammar, H.Y., Badran, H.M. and Eid, K.M., TM-doped B12N12 nano-cage (TM = Mn, Fe) as a sensor for CO, NO, and NH3 gases: A DFT and TD-DFT study. Materials Today Communications, 25, Art. 101681, 2020. DOI: https://doi.org/10.1016/j.mtcomm.2020.101681.
[30] Vozzi, C., et al., Generalized molecular orbital tomography. Nature Physics, 7(10), pp. 822-826, 2011. DOI: https://doi.org/10.1038/nphys2029.
[31] Zhao, W., Zou, D., Sun, Z., Yu, Y., and Yang, C., Controlling spin off state by gas molecules adsorption on metal-phthalocyanine molecular junctions and its possibility of gas sensor. Physics Letters A, 382(37), pp. 2666-2672, 2018. DOI: https://doi.org/10.1016/j.physleta.2018.06.028.
[32] Cid, B.J., et al., Metal-decorated siligene as work function type sensor for NH3 detection: A DFT approach. Applied Surface Science, 610, art. 155541, 2023. DOI: https://doi.org/10.1016/j.apsusc.2022.155541.
[33] Opi, M.H., Ahmed, T., Swarna, M.R., Piya, A.A., and Shamim, S.U.D., Assessment of the drug delivery potential of graphene, boron nitride and their in-plane doped structures for hydroxyurea anti-cancer drug via DFT study. Nanoscale Advances, 20, art. 428, 2024. DOI: https://doi.org/10.1039/D4NA00428K
[34] Berland, K., Cooper, V.R., Lee, K., Schröder, E., Thonhauser, T., Hyldgaard, P., and Lundqvist, B.I., van der Waals forces in density functional theory: The vdW-DF method. Reports on Progress in Physics, 78(6), art. 066501, 2015. DOI: https://doi.org/10.1088/0034-4885/78/6/066501.
[35] Salih, E., and Ayesh, A.I., DFT investigation of H₂S adsorption on graphene nanosheets and nanoribbons: Comparative study. Superlattices and Microstructures, 146, art. 106650, 2020. DOI: https://doi.org/10.1016/j.spmi.2020.106650.
[36] Raval, D., Gupta, S.K., and Gajjar, P.N., Detection of H₂S, HF and H2 pollutant gases on the surface of penta-PdAs2 monolayer using DFT approach. Scientific Reports, 13(1), art. 586, 2023. DOI: https://doi.org/10.1038/s41598-023-27893-w.
[37] Cui, H., et al., DFT Study of Zn-Modified SnP3: A H₂S Gas Sensor with Superior Sensitivity, Selectivity, and Fast Recovery Time. Nanomaterials, 13(20), art. 2781, 2023. DOI: https://doi.org/10.3390/nano13202781.
Cómo citar
IEEE
ACM
ACS
APA
ABNT
Chicago
Harvard
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2026 DYNA

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
El autor o autores de un artículo aceptado para publicación en cualquiera de las revistas editadas por la facultad de Minas cederán la totalidad de los derechos patrimoniales a la Universidad Nacional de Colombia de manera gratuita, dentro de los cuáles se incluyen: el derecho a editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir en artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista.




