Publicado
Methodology for evaluating the effectiveness of clay inhibition treatments in injection wells: a case study in a colombian field
Metodología para la evaluación de la eficacia de tratamientos de inhibición de arcilla en pozos inyectores: caso de estudio en un campo colombiano
DOI:
https://doi.org/10.15446/dyna.v92n239.121114Palabras clave:
mature fields, injectivity, clays, inhibitors, swelling, fines migration, laboratory testing, field methodology, water injection wells (en)campos maduros, inyectividad, arcillas, inhibidores, hinchamiento, migración de finos, pruebas de laboratorio, metodología de campo, pozos inyectores de agua (es)
Descargas
In the mature fields of the Middle Magdalena Valley Basin (VMM), high water production and limited disposal capacity pose operational challenges, particularly due to the declining efficiency of injection wells. The operating company, in collaboration with the Industrial University of Santander (UIS), evaluated the use of chemical inhibitors based on the hypothesis that injectivity loss was caused by clay swelling. However, laboratory tests ruled out swelling and identified fines of migration as a potential limiting factor. To validate these findings, a field evaluation methodology was developed, involving real-time monitoring of injection rates and pressure variations using different concentrations of chemical product. The results confirmed that the injected chemical product does not significantly improve injectivity, leading to the conclusion that discontinuing the injection of the inhibitor is the best option to optimize field operations from a cost-benefit perspective.
En los campos maduros de la Cuenca del Valle Medio del Magdalena (VMM), la alta producción de agua y la limitada capacidad de disposición generan desafíos operacionales, especialmente por la pérdida de eficiencia de los pozos inyectores. La empresa operadora, en conjunto con la Universidad Industrial de Santander (UIS), evaluó el uso de inhibidores químicos ante la hipótesis de que la disminución de inyectividad se debía al hinchamiento de arcillas. Sin embargo, las pruebas de laboratorio descartaron este fenómeno e identificaron la migración de finos como un factor relevante. Para validar estos resultados, se diseñó una metodología de evaluación en campo, monitoreando en tiempo real la tasa de inyección y las variaciones de presión con diferentes concentraciones del producto químico. Los resultados corroboraron que el inhibidor de hinchamiento inyectado no mejora significativamente la inyectividad, lo que lleva a la conclusión de que retirar la inyección del inhibidor es la mejor opción para optimizar la operación desde el punto de vista costo-beneficio.
Referencias
[1] Abbas, A., Flori, R., AL-Anssari, A., and Alsaba, M., Laboratory analysis to assess shale stability for the Zubair Formation, Southtern Iraq. Journal of Natural Gas Science and Engineering 56, pp. 315-323, 2018. DOI: https://doi.org/10.1016/j.jngse.2018.05.041
[2] Abbasi, S., Shahrabadi, A., and Golghanddashti, H., Experimental investigation of clay mineral effects on the permeability. Society of Petroleum Engineers, Art. 4248, 2011. DOI: https://doi.org/10.2118/144248-MS
[3] Alsaba, M., Al-Marshad, A., Abbas, A., Abdulkareem, T., Al-Shammary, A., Al-Ajmi, M., and Kebeish, E., Laboratory evaluation to assess the effectiveness of inhibitive nano-water-based drilling fluids for Zubair shale formation. Journal of Petroleum Exploration and Production Technology 10, pp. 419-428, 2019. DOI: https://doi.org/10.1007/s13202-019-0737-3
[4] Anderson, R., Ratcliffe, I., Greenwell, H., Williams, P., Cliffe, S., and Coveney, P., Clay swelling a challenge in the oilfield. Earth-Science Reviews, 98(3-4), pp. 201–216, 2010. DOI: https://doi.org/10.1016/j.earscirev.2009.11.003
[5] API Methylene blue test for drill solids and commercial bentonites. Section 12 in: API RP 13I: Laboratory Testing of Drilling Fluids, 7th ed., ISO 10416:2002. American Petroleum Institute, 2004.
[6] API 1998 Porosity determination and permeability determination. sections 5 and 6 in: API RP 40: Core Analysis, 2nd ed., American Petroleum Institute, 1998.
[7] Balaban, R.C., Ferreira, E., and Rodrigues, M., Design of experiments to evaluate clay swelling inhibition by different combinations of organic compounds and inorganic salts for application in water base drilling fluids. Applied Clay Science, pp. 124-130, 2015. DOI: https://doi.org/10.1016/j.clay.2014.12.029
[8] Bailey, L., Keall, M., Audibert, A., and Lecourtier, J., Effect of clay/polymer interactions on shale stabilization during drilling. IFP Langmuir 10, pp. 1544-1549, 1994. DOI: https://doi.org/10.1021/la00017a037
[9] Bishop, S.R., The experimental investigation of formation damage due to the induced flocculation of clays within a sandstone pore structure by a high salinity brines. Paper presented at the SPE European Formation Damage Conference, The Hague, Netherlands, June 1997. DOI: https://doi.org/10.2118/38156-MS
[10] Cheng, K., and Heidari, Z., A new method for quantifying cation exchange capacity in clay minerals. Applied Clay Science 161, pp. 444-455, 2018. DOI: https://doi.org/10.1016/j.clay.2018.05.006
[11] Civan, F., Reservoir formation damage: fundamentals, modeling, assessment, and mitigation, 1st ed., Gulf Publishing Company, Houston, Texas, USA, 2000. DOI: https://doi.org/10.1016/C2020-0-03547-4
[12] Ecopetrol., Reporte integrado de gestión sostenible [online]. 2015. Bogotá. Available at: https://www.ecopetrol.com.co/wps/portal/Home/es/ResponsabilidadEtiqueta/InformesGestionSostenibilidad/Informesdegestion
[13] Fink, J.K., Hydraulic fracturing chemicals and fluids technology. Gulf Professional Publishing, Oxford, UK, 2013. DOI: https://doi.org/10.1016/C2012-0-02544-6
[14] Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), [online]. 2015. Estudio Nacional del Agua 2014. Bogotá. Available at: https://www.ideam.gov.co/sala-de-prensa/informes/Estudios%20nacionales%20del%20agua
[15] Karpinski, B., and Szkodo, M., Clay minerals mineralogy and phenomenon of clay swelling in oil and gas industry. Advances in Materials Science, 15(1) pp. 37-55, 2015. DOI: https://doi.org/10.1515/adms-2015-0006
[16] Laird, D.A., Influence of layer charge on swelling of smectites. Appl. Clay Sci. 34, pp. 74-87, 2006. DOI: https://doi.org/10.1016/j.clay.2006.01.009
[17] Leone, J.A., and Scott, E.M., Characterization and control of formation damage during waterflooding of a high-clay-content reservoir. Society of Petroleum Engineers - SPE Res Eng, 3(4), pp. 1279–1286, 1988. DOI: https://doi.org/10.2118/16234-PA
[18] Liu, S., Mo, X., Zhang, C., Sun, D., and Mu, C., Swelling inhibition by polyglycols in montmorillonite dispersions. Journal of Dispersion Science and Technology 25, pp. 63–66, 2004. DOI: https://doi.org/10.1081/DIS-120027669
[19] Kleven, R., and Alstad, J., Interaction of Alkali, Alkaline-Earth and Sulphate Ions with clay minerals and sedimentary rocks. Journal of Petroleum Science and Engineering, 15(1996), pp. 181-200, 1996. DOI: https://doi.org/10.1016/0920-4105(95)00085-2
[20] Norrish, K., The swelling of Montmorillonite, Discussions Faraday Soc., 18, pp. 120-134, 1954. DOI: https://doi.org/10.1039/DF9541800120
[21] Ramos, N., Cabrera, M., Liberti, I., Cevasco, C., Dibilio, J., Belén, M., y Renta, D., Utilización de ensayos de expansión de arcillas para el análisis de inhibidores en la cuenca del Golfo San Jorge, [online], 2017. Available at: https://www.researchgate.net/publication/318040185_utilizacion_de_ensayos_de_expasion_de_arcillas_para_el_analisis_de_inhibidores
[22] Sarkisyan, S.G., Origin of authigenic clay minerals and their significance in petroleum geology. Sedimentary Geology, 7, pp. 1-22, 1972. DOI: https://doi.org/10.1016/0037-0738(72)90050-4
[23] Valle Medio del Magdalena—Agencia Nacional de Hidrocarburos. [online], 2024. Available at: https://www.anh.gov.co/es/hidrocarburos/oportunidades-disponibles/procesosde-seleccion/ronda-colombia-2010/tipo-1/valle-medio-del-magdalena/
[24] Yang, R., Zhang, J., Chen, H., Jiang, R., Sun, Z., and Rui, Z., The injectivity variation prediction model for water flooding oilfields sustainable development. Energy, 189, Art. 116317, 2019. DOI: https://doi.org/10.1016/j.energy.2019.116317
[25] Zhou, Z., Gunter, W.D., Kadatz, B., and Cameron, S., Effect of clay swelling on reservoir quality. Petroleum Society of Canada, art. 96-07-02, 1996. DOI: https://doi.org/10.2118/96-07-02
[26] Zhou, Z.J., Cameron, S., Kadatz, B., and Gunter, W.D., Clay swelling diagrams: their applications in formation damage control. Paper presented at the SPE Formation Damage Control Symposium, Lafayette, Louisiana, February, 1996. DOI: https://doi.org/10.2118/31123-MS
Cómo citar
IEEE
ACM
ACS
APA
ABNT
Chicago
Harvard
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 DYNA

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
El autor o autores de un artículo aceptado para publicación en cualquiera de las revistas editadas por la facultad de Minas cederán la totalidad de los derechos patrimoniales a la Universidad Nacional de Colombia de manera gratuita, dentro de los cuáles se incluyen: el derecho a editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir en artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista.




