Publicado

2018-07-01

Encapsulation of β-carotene extracted from peach palm residues: a stability study using two spray-dried processes

Encapsulación de β-caroteno extraído a partir de residuos de chontaduro: un estudio de estabilidad usando dos procesos de secado por atomización

DOI:

https://doi.org/10.15446/dyna.v85n206.68089

Palabras clave:

peel, ultrasound, sunflower oil, gelatin, morphology (en)
epicarpio, ultrasonido, aceite de girasol, gelatina, morfología (es)

Descargas

Autores/as

This study aimed to evaluate the stability of β-carotene from peach palm residues (Bactris gasipaes) when using two processes of encapsulation with spray drying: The first process (MC1) consisted of a mixture of maltodextrin: gum arabic as the wall material, an inlet temperature of 160°C, an outlet temperature of 70 °C, flow rate of 12.6 mL/min; the second process (MC2) used gelatin, sugar and lecithin, an inlet temperature of 100°C, an outlet temperature of 65°C, and a flow rate of 3.13 mL/min. The microcapsules (MC1 and MC2) were subjected to physicochemical tests, evaluating their stability for temperature, light, pH and oxygen, as compared to a control of β-carotene extracted from sunflower oil (RCSO). The results indicated that the microcapsules obtained from process (MC2) had better β-carotene stability (p <0.05), as compared to MC1 and RCSO, with higher levels of retention (88.24%), temperature (90.11%), light (67.36%), pH (84.21%) and oxygen (79.23%).
El objetivo de este estudio fue evaluar la estabilidad del β-caroteno procedente de residuos de chontaduro (Bactris gasipaes), mediante dos procesos de encapsulación por secado spray: El primer proceso (MC1) consistió en una mezcla de maltodextrina: goma arábiga como materiales de pared, temperatura de entrada 160 °C, salida 70°C, caudal 12.6 mL/min y en el segundo proceso (MC2) se usó gelatina, azúcar y lecitina, temperatura de entrada 100 °C, salida 65°C, caudal 3.13 mL/min . Las microcápsulas obtenidas de (MC1 y MC2) fueron sometidas a pruebas fisicoquímicas, evaluando su estabilidad ante la temperatura, la luz, pH y oxígeno frente a un control de β-caroteno extraído en aceite de girasol (RCSO). Los resultados indicaron que las microcápsulas obtenidas del proceso (MC2) presentaron una mejor estabilidad de β-caroteno (p <0,05) frente a MC1 y RCSO, al presentar mayores niveles de retención (88.24%), temperatura (90.11%), luz (67.36%), pH (84.21%) y oxígeno 79.23%).

Referencias

Rojas-Garbanzo, C., Pérez, A.M., Bustos-Carmona, J. and Vaillant, F., Identification and quantification of carotenoids by HPLC-DAD during

the process of peach palm (Bactris gasipaes HBK) flour. Food Res. Int. 44(7), pp. 2377-2384, 2011. DOI: 10.1016/j.foodres.2011.02.045

Jatunov, S., Quesada, S., Díaz, C. and Murillo, E., Carotenoid composition and antioxidant activity of the raw and boiled fruit mesocarp of six varieties of Bactris gasipaes. Arch Latinoam Nutr. 60(1), pp. 99-104, 2010.

Graefe, S., Dufour, D., Van Zonneveld, M., Rodriguez, F. and Gonzalez, A., Peach palm (Bactris gasipaes) in tropical Latin America: implications for biodiversity conservation, natural resource management and human nutrition. Biodivers. Conserv. 22(2), pp. 269-300, 2013. DOI: 10.1007/s10531-012-0402-3

Babbar, N., Oberoi, H. and Sandhu, S., Therapeutic and nutraceutical potential of bioactive compounds extracted from fruit residues. Crit Rev Food Sci Nutr. 55(3), pp. 319-337, 2015. DOI: 10.1080/10408398.2011.653734

Woodside, J.V., McGrath, A.J., Lyner, N. and McKinley, M.C., Carotenoids and health in older people. Maturitas. 80(1), pp. 63-68, 2015. DOI: 10.1016/j.maturitas.2014.10.012

Qian, C., Decker, E.A., Xiao, H. and McClements, D.J., Inhibition of β-carotene degradation in oil-in-water nanoemulsions: influence of oil-soluble and water-soluble antioxidants. Food Chem., 135(3), pp. 1036-1043, 2012. DOI: 0.1016/j.foodchem.2012.05.085

Hojjati, M., Razavi, S.H., Rezaei, K. and Gilani, K., Spray drying microencapsulation of natural canthaxantin using soluble soybean polysaccharide as a carrier. Food Sci Biotechnol., 20(1), pp. 63-69, 2011. DOI: 0.1007/s10068-011-0009-6

Pu, J., Bankston, J.D. and Sathivel, S., Production of microencapsulated crawfish (Procambarus clarkii) astaxanthin in oil by spray drying technology. Drying Technol., 29(10), pp. 1150-1160, 2011. DOI: 10.1080/07373937.2011.573155

Wang, Y., Ye, H., Zhou, C., Lv, F., Bie, X. and Lu, Z., Study on the spray-drying encapsulation of lutein in the porous starch and gelatin mixture. Euro Food Res Technol., 234(1), pp. 157-163, 2012. DOI: 10.1007/s00217-011-1630-6

Nunes, I.L. and Mercadante, A.Z., Encapsulation of lycopene using spray-drying and molecular inclusion processes. Braz Arch Biol Technol., 50(5), pp. 893-900, 2007. DOI: 10.1590/S1516-89132007000500018

Quek, S.Y., Chok, N.K. and Swedlund, P., The physicochemical properties of spray-dried watermelon powders. Chem Eng Process., 46(5), pp. 386-392, 2007. DOI: 10.1016/j.cep.2006.06.020

Rascón, M.P., Beristain, C.I., García, H.S. and Salgado, M.A., Carotenoid retention and storage stability of spray-dried encapsulated paprika oleoresin using gum Arabic and soy protein isolate as wall materials. LWT-Food Sci Technol., 44(2), pp. 549-557, 2011. DOI: 10.1016/j.lwt.2010.08.021

Guadarrama-Lezama, A.Y., Dorantes-Alvarez, L., Jaramillo-Flores, M.E., Pérez-Alonso, C., Niranjan, K., Gutiérrez-López, G.F. and Alamilla-Beltrán, L., Preparation and characterization of non-aqueous extracts from chilli (Capsicum annuum L.) and their microencapsulates obtained by spray-drying. Preparation and characterization of non-aqueous extracts from chilli (Capsicum annuum L.) and their microencapsulates obtained by spray-drying. Food Eng. 112(1), pp. 29-37, 2012. DOI: 0.1016/j.jfoodeng.2012.03.032

Bustos-Garza, C., Yáñez-Fernández, J. and Barragán-Huerta, B.E., Thermal and pH stability of spray-dried encapsulated astaxanthin oleoresin from Haematococcus pluvialis using several encapsulation wall materials. Food Res Int., 54(1), pp. 641-649, 2013. DOI: 10.1016/j.foodres.2013.07.061

Domínguez-Cañedo, I.L., Beristaín-Guevara, C.I., Díaz-Sobac, R. and Vázquez-Luna, A., Degradation of carotenoids and capsaicin in the molecular inclusion complex of habanero chili oleoresin (Capsicum chinense) in beta-cyclodextrin. CYTA J. Food, 13(1), pp. 151-158, 2015. DOI: 10.1080/19476337.2014.926459

Lim, A.S., Burdikova, Z., Sheehan, D.J. and Roos, Y.H., Carotenoid stability in high total solid spray dried emulsions with gum Arabic layered interface and trehalose–WPI composites as wall materials. Innov Food Sci Emerg Technol., 34, pp. 310-319, 2016. DOI: 10.1016/j.ifset.2016.03.001

Montero, P., Calvo, M.M., Gómez-Guillén, M.C. and Gómez-Estaca, J., Microcapsules containing astaxanthin from shrimp waste as potential food coloring and functional ingredient: characterization, stability, and bioaccessibility. LWT-Food Sci Tech., 70, pp. 229-236, 2016. DOI: 10.1016/j.lwt.2016.02.040

Ordóñez-Santos, L.E., Pinzón-Zarate, L.X. and González-Salcedo, L.O., Optimization of ultrasonic-assisted extraction of total carotenoids from peach palm fruit (Bactris gasipaes) by-products with sunflower oil using response surface methodology. Ultrason Sonochem., 27, pp. 560-566, 2015. DOI: 10.1016/j.ultsonch.2015.04.010

Robert, P., Carlsson, R.M., Romero, N. and Masson, L., Stability of spray-dried encapsulated carotenoid pigments from rosa mosqueta (Rosa rubiginosa) oleoresin., J. Am Oil Chem Soc., 80(11), pp. 1115-1120, 2003. DOI: 10.1007/s11746-003-0828-4

Alishahi, A., Mirvaghefi, A., Tehrani, M., Farahmand, H., Shojaosadati, S., Dorkoosh, F. and Elsabee, M., Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chem. 126, pp. 935-940, 2011. DOI: 10.1016/j.foodchem.2010.11.086

Rutz, J.K., Borges, C.D., Zambiazi, R.C., da Rosa, C.G. and da Silva, M.M., Elaboration of microparticles of carotenoids from natural and synthetic sources for applications in food. Food Chem., 202, pp.324-333, 2016. DOI: 10.1016/j.foodchem.2016.01.140

Jun-Xia, X., Hai-yan, Y. and Jian, Y., Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum Arabic. Food Chem., 25(4), pp. 1267-1272, 2011. DOI: 10.1016/j.foodchem.2010.10.063

AOAC, Official methods of analysis. Association of Official Analytical Chemists (AOAC) (16th Ed.) Maryland: AOAC International, 1998.

Ordóñez-Santos, L.E. and Ledezma-Realpe, D.P., Lycopene concentration and physicochemical properties of tropical fruits. Food Nutr Sci., 4(07), pp. 758-762, 2013. DOI: 10.4236/fns.2013.47097

Shu, B., Yu, W., Zhao, Y. and Liu, X., Study on microencapsulation of lycopene by spray-drying. Food Eng., 76(4), pp. 664-669, 2006. DOI: 10.1016/j.jfoodeng.2005.05.062

Turan, F.T., Cengiz, A. and Kahyaoglu, T., Evaluation of ultrasonic nozzle with spray-drying as a novel method for the microencapsulationof blueberry's bioactive compounds. Innov. Food Sci. Emerg. Technol., 32, pp. 136-145, 2015. DOI: 10.1016/j.ifset.2015.09.011

Seybold, C., Fröhlich, K., Bitsch, R., Otto, K. and Böhm, V., Changes in contents of carotenoids and vitamin E during tomato processing, J. Agric Food Chem., 52(23), pp. 7005-7010, 2004. DOI: 10.1021/jf049169c

Handscomb, C.S. and Kraft, M., Simulating the structural evolution of droplets following shell formation. Chem Eng Sci., 65(2), pp. 713-725, 2010. DOI: 10.1016/j.ces.2009.09.025

Pérez-Alonso, C., Fabela-Morón, M.F., Guadarrama-Lezama, A.Y., Barrera-Pichardo, J.F., Alamilla-Beltrán, L. and Rodríguez-Huezo, M.E., Interrelationship between the structural features and rehydration properties of spray dried manzano chilli sauce microcapsules. EV Mex. Ing. Quim., 8(2), pp. 187-196, 2009.

Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A. and Saurel, R., Applications of spray-drying in microencapsulation of food ingredients: an overview, Food Res Int., 40(9), pp. 1107-1121, 2007. DOI: 10.1016/j.foodres.2007.07.004

Chen, B.H. and Huang, J.H., Degradation and isomerization of chlorophyll a and β-carotene as affected by various heating and illumination treatments. Food Chem., 62(3), pp. 299-307, 1998. DOI: 10.1016/S0308-8146(97)00201-X

Lee, M.T. and Chen, B.H., Stability of lycopene during heating and illumination in a model system, Food Chem., 78(4), pp. 425-432, 2002. DOI: 10.1016/S0308-8146(02)00146-2

Shi, J., Maguer, M., Bryan, M. and Kakuda, Y., Kinetics of lycopene degradation in tomato puree by heat and light irradiation, J. Food Process Eng., 25(6), pp. 485-498, 2003. DOI: 10.1111/j.1745-4530.2003.tb00647.x

Boon, C.S., McClements, D.J., Weiss, J. and Decker, E.A., Factors influencing the chemical stability of carotenoids in foods. Crit Rev Food Sci Nutr., 50(6), pp. 515-532, 2010. DOI: 10.1080/10408390802565889

Seyedrazi, N., Razavi, S.H. and Emam-Djomeh, Z., Effect of different pH on canthaxanthin degradation, Eng Technol., 59, pp. 532-536, 2011. DOI: 10.1016/j.foodhyd.2006.10.011

Loksuwan, J., Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin, Food Hydrocoll., 21(5), pp. 928-935, 2007.

Cómo citar

IEEE

[1]
L. E. Ordoñez-Santos, J. Martínez-Girón, y R. H. Villamizar-Vargas, «Encapsulation of β-carotene extracted from peach palm residues: a stability study using two spray-dried processes», DYNA, vol. 85, n.º 206, pp. 128–134, jul. 2018.

ACM

[1]
Ordoñez-Santos, L.E., Martínez-Girón, J. y Villamizar-Vargas, R.H. 2018. Encapsulation of β-carotene extracted from peach palm residues: a stability study using two spray-dried processes. DYNA. 85, 206 (jul. 2018), 128–134. DOI:https://doi.org/10.15446/dyna.v85n206.68089.

ACS

(1)
Ordoñez-Santos, L. E.; Martínez-Girón, J.; Villamizar-Vargas, R. H. Encapsulation of β-carotene extracted from peach palm residues: a stability study using two spray-dried processes. DYNA 2018, 85, 128-134.

APA

Ordoñez-Santos, L. E., Martínez-Girón, J., & Villamizar-Vargas, R. H. (2018). Encapsulation of β-carotene extracted from peach palm residues: a stability study using two spray-dried processes. DYNA, 85(206), 128–134. https://doi.org/10.15446/dyna.v85n206.68089

ABNT

ORDOÑEZ-SANTOS, L. E.; MARTÍNEZ-GIRÓN, J.; VILLAMIZAR-VARGAS, R. H. Encapsulation of β-carotene extracted from peach palm residues: a stability study using two spray-dried processes. DYNA, [S. l.], v. 85, n. 206, p. 128–134, 2018. DOI: 10.15446/dyna.v85n206.68089. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/68089. Acesso em: 13 ago. 2022.

Chicago

Ordoñez-Santos, Luis Eduardo, Jader Martínez-Girón, y Rafael Humberto Villamizar-Vargas. 2018. «Encapsulation of β-carotene extracted from peach palm residues: a stability study using two spray-dried processes». DYNA 85 (206):128-34. https://doi.org/10.15446/dyna.v85n206.68089.

Harvard

Ordoñez-Santos, L. E., Martínez-Girón, J. y Villamizar-Vargas, R. H. (2018) «Encapsulation of β-carotene extracted from peach palm residues: a stability study using two spray-dried processes», DYNA, 85(206), pp. 128–134. doi: 10.15446/dyna.v85n206.68089.

MLA

Ordoñez-Santos, L. E., J. Martínez-Girón, y R. H. Villamizar-Vargas. «Encapsulation of β-carotene extracted from peach palm residues: a stability study using two spray-dried processes». DYNA, vol. 85, n.º 206, julio de 2018, pp. 128-34, doi:10.15446/dyna.v85n206.68089.

Turabian

Ordoñez-Santos, Luis Eduardo, Jader Martínez-Girón, y Rafael Humberto Villamizar-Vargas. «Encapsulation of β-carotene extracted from peach palm residues: a stability study using two spray-dried processes». DYNA 85, no. 206 (julio 1, 2018): 128–134. Accedido agosto 13, 2022. https://revistas.unal.edu.co/index.php/dyna/article/view/68089.

Vancouver

1.
Ordoñez-Santos LE, Martínez-Girón J, Villamizar-Vargas RH. Encapsulation of β-carotene extracted from peach palm residues: a stability study using two spray-dried processes. DYNA [Internet]. 1 de julio de 2018 [citado 13 de agosto de 2022];85(206):128-34. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/68089

Descargar cita

Dimensions

PlumX

Descargas

Los datos de descargas todavía no están disponibles.

Visitas a la página del resumen del artículo

417