Publicado

2019-07-01

Viability of Lactobacillus casei ATCC 393 and properties in Andean blackberry suspensions with probiotic and prebiotic characteristics

Viabilidad de Lactobacillus casei ATCC 393 y propiedades en suspensiones de mora de castilla con características probióticas y prebióticas

DOI:

https://doi.org/10.15446/dyna.v86n210.72929

Palabras clave:

Rubus glaucus Benth, functional food, inulin, colloids (en)
Rubus glaucus Benth, alimento funcional, inulina, coloides (es)

Descargas

Autores/as

Food industry has grown in recent years mainly due to the supply of functional foods with probiotics and prebiotics. The viability of Lactobacillus casei and the properties of blackberry suspensions added with inulin were evaluated using a central design composed of the following factors: mass fraction of total solid blackberry concentrate (XTSBC) (0.103-0.120), [McFarland] (6-10), inulin (2.78-3.68%), and mass blackberry concentrate (BC)/mass inoculum (R) (5-20); and the dependent variables: moisture (M), pH, acidity, °Brix, total solids suspension (TSS), viscosity (μ), zeta potential (z), and Log CFU/g. Results of the experimental optimization of multiple responses were: XTSBC (0.103), [McFarland] (10), inulin (3.12%w/w), and R (18.5); being the dependent variables: M=86.7±0.0%, pH=2.74±0.01, acidity=3.1±0.0%, °Brix=11.0±0.1%, TSS=13.3±0.0%, µ=1288.0±20.1 cP, z=-13.3±0.3 mV and Log CFU/g=7.8±0.5. The probiotic microorganism Lb. casei ATCC 393 presents an adaptability in suspensions based on BC and inulin, which guarantee its viability and a possible use for obtaining an innovative spray-dried product.

La industria alimentaria en los últimos años ha crecido principalmente por la oferta de alimentos funcionales con probióticos y prebióticos. Se evaluó la viabilidad del Lactobacillus casei y las propiedades de suspensiones de mora adicionadas con inulina, utilizando un diseño central compuesto con los factores: fracción másica sólidos totales concentrado de mora (XSTCM) (0,103–0,120), [McFarland] (6-10), inulina (2,78-3,68%) y masa (CM)/masa inóculo (R) (5-20) y las variables dependientes: humedad (H), pH, acidez, °Brix, solidos totales suspensión (STS), viscosidad (µ) potencial zeta (z) y Log UFC/g. Los resultados de la optimización experimental de múltiples respuestas fueron: XSTCM (0,103), [McFarland] (10), Inulina (3,12 %p/p) y R (18,5), siendo las variables dependientes: H=86,7±0,0%, pH=2,74±0,01, acidez=3,1±0,0%, °Brix=11,0±0,1%, STS=13,3±0,0%, µ=1288,0±20,1 cP, z=-13,3±0,3 mV y Log UFC/g=7,8±0,5. El microorganismo probiótico Lb. casei ATCC 393 presenta una adaptabilidad en suspensiones a base de CM e inulina, que garantizan su viabilidad y un posible uso para la obtención de un producto innovador secado por aspersión.

Referencias

Ferrari, C., Germer, S., & De Aguirre, J. effects of spray-drying conditions on the physicochemical properties of blackberry powder, Dry Technology, 30(2), pp.154–63, 2012. https://doi.org/10.1080/07373937.2011.628429

Oszmiański, J., Nowicka, P., Teleszko, M., Wojdyło, A., Cebulak, T., & Oklejewicz, K. Analysis of phenolic compounds and antioxidant activity in wild blackberry fruits. Molecular Diversity Preservation International, 16(7), pp. 14540–53, 2015. doi:10.3390/ijms160714540

Szajdek, A., & Borowska, E. Bioactive compounds and health-promoting properties of Berry fruits: A review, Plant foods for human nutrition, 63(4), pp. 147–53, 2008. doi:10.1007/s11130-008-0097-5

Galus, S., & Kadzińska, J. Food applications of emulsion-based edible films and coatings. Trends in Food Science & Technology, 45(2), pp.273–283, 2015. https://doi.org/10.1016/j.tifs.2015.07.011.

Ramírez Q., Aristizábal T., Restrepo F. Conservación de mora de castilla mediante la aplicación de un recubrimiento comestible de gel de mucílago de penca de sábila, Vitae, 20(3), pp. 172-183, 2013.

Kaume, L., Howard, L. R., & Devareddy, L. The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health benefits, Journal of Agricultural and Food Chemistry, 60(23), pp. 5716–5727, 2012. https://doi.org/10.1021/jf203318p

MINAGRICULTURA, Colombia. Cadena productiva nacional de la mora: cifras sectoriales, 51p, 2015.

Páez, R., Lavari, L., Audero, G., Cuatrin, A., Zaritzky, N., Reinheimer, J., & Vinderola, G. Study of the effects of spray-drying on the functionality of probiotic lactobacilli, International Journal of Dairy Technology, 66(2), pp. 155–161, 2013.

Liao, L. K., Wei, X. Y., Gong, X., Li, J. H., Huang, T., & Xiong, T. Microencapsulation of Lactobacillus casei LK-1 by spray drying related to its stability and in vitro digestión, LWT - Food Science and Technology, 82, pp. 82–89, 2017.

Kerry, R., Patra, J. K., Gouda, S., Park, Y., Shin, H.-S., & Das, G. Benefaction of probiotics for human health: A review, Journal of Food and Drug Analysis, 30, pp. 1–13, 2018.

Dimitrellou, D., Kandylis, P., & Kourkoutas, Y. Effect of cooling rate, freeze-drying, and storage on survival of free and immobilized Lactobacillus casei ATCC 393, LWT - Food Science and Technology, 69, pp. 468–473, 2016.

Rodríguez-Barona, S., Giraldo, G. I., & Zuluaga, Y. Evaluación de la incorporación de fibra prebiótica sobre la viabilidad de Lactobacillus casei impregnado en matrices de mora (Rubus glaucus), Información Tecnológica, 26(5), pp. 25–34, 2015. https://doi.org/10.4067/S0718-07642015000500005

Ministerio de la protección Social, Colombia. Rotulado Nutricional De Alimentos – Resolución 333 De 2011.

Ministerio de la protección Social, Colombia. Suplementos – Resolución 3096 de 2007.

ICONTEC, NTC 805. Productos lácteos, leches fermentadas, 9p, 2005.

Vijaya, B., Vijayendra, S., Reddy, O. Trends in dairy and non-dairy probiotic products - a review, Journal of Food Science and Technology, 52(10), pp. 6112-24 2015.

Vergara, A. Estudio de la viabilidad de Lactobacillus casei en jugo de pera, Tesis de grado, Universidad Austral de Chile, 2015.

Marin, Z., Cortés, M., Montoya, C. Evaluación de la viabilidad de crecimiento de la cepa nativa Lactobacillus plantarum LPBM10 y la cepa comercial Lactobacillus casei ATCC 393 en pulpa de uchuva y en solución isotónica de glucosa, Vitae, 16(2), pp. 210–17, 2009

De la Cruz, A & Terán, A. Tesis de grado, Evaluación de la viabilidad de Lactobacillus casei libre encapsulado en alginato sódico como probiótico en jugo de guayaba, Escuela Agrícola Panamericana, 2013.

Reid G. Probiotics: Definition, scope and mechanisms of action, Best Pract Res Clin Gastroenterol, 30(1), pp.17–25, 2016

AOAC. Official methods of analysis. Association of Official Analytical Chemists, Arlington, 19th edition, Arlington, Virginia (USA) 684p, 2012.

Wardy, W., Pujols Martínez, D., Xu, Z., Kyoon, H., & Prinyawiwatkul, W. Viscosity changes of chitosan solution affect physico-functional properties and consumer perception of coated eggs during storage, LWT - Food Science and Technology, 55, pp. 67-73, 2014.

Niu, F., Zhang, Y., Chang, C., Pan, W., Sun, W., Su, Y., & Yang, Y. Influence of the preparation method on the structure formed by ovalbumin/gum arabic to observe the stability of oil-in-water emulsion, Food Hydrocolloids, 63, pp. 602–610, 2017. https://doi.org/10.1016/j.foodhyd.2016.10.007

Koneman E. Koneman's color atlas and textbook of diagnostic microbiology" 6° Edition. Lippincott Williams & Wilkins, 2006.

. Badui, S. Química de los alimentos, Editorial Pearson, Quinta edición, Ciudad de México, 723p, 2013

Shori, A. Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages, Food Bioscience, 13, pp. 1–8, 2016. https://doi.org/10.1016/j.fbio.2015.11.001

Drapala, P., Mulvihill, M., Mahony, A. A review of the analytical approaches used for studying the structure, interactions and stability of emulsions in nutritional beverage systems, Food structure, 16, pp. 27-42, 2018. https://doi.org/10.1016/j.foostr.2018.01.004. 2018

Wang, W., Xu, S. Degradation kinetics of anthocyanins in blackberry juice and concentrate. Journal of Food Engineering, 82, pp. 271–275, 2007. https://doi.org/10.1016/j.jfoodeng.2007.01.018

Haminiuk, C., Sierakowski, D., Masson, M. rheological characterization of blackberry pulp, Brazilian Journal of Food Technology, 9(4), pp. 291-296, 2006.

. Franceschinis, L., Salvatori, D., Sosa, N., Schebor, C. Physical and functional properties of blackberry freeze- and spray-dried powders. Drying Technology, 32 (2), pp. 197- 207, 2014.

Rodríguez, B., Zluluaga-Pava, Y., & Cruz-Rios, D. Producto potencialmente simbiótico a partir de mora de castilla ( Rubus glaucus ) aplicando impregnación a vacío, Scientia Agropecuaria, 3, pp. 273–278, 2012

Moreno, B., Deaquiz, Y. Caracterización de parámetros fisicoquímicos en frutos de mora (Rubus alpinus Macfad). Acta Agronómica, 25, pp. 130-136, 2016

Kaume, L., Howard, LR., Devareddy, L. The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health benefits. J Agric Food Chem, 60(23) pp. 5716–27, 2012.

Ray, B., Bhunia, Arun. Fundamentos de microbiología de los alimentos. Cuarta edición. Ed Mc Graw Hill. 352 p. 2010.

Huang, S., Vignolles, M., Chen, D., Le Loir, Y., Jan, G., Schuck, P. Spray drying of probiotics and other food-grade bacteria: A review. Trends Food Sci Technol, 63 pp. 1–17, 2017

Páez, R., Lavari, L., Audero, G., Cuatrin, A., Zaritzky, N., Reinheimer, J., & Vinderola, G. Study of the effects of spray-drying on the functionality of probiotic lactobacilli. International Journal of Dairy Technology, 66(2), pp. 155–161, 2013. https://doi.org/10.1111/1471-0307.12038

FAO/WHO. Expert consultation. Human vitamin and mineral requirement. Report of a joint, 303p, Bangkok. 2001

Krasaekoopt, W., Watcharapoka, S. Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice, LWT - Food Science and Technology, 57, pp. 761-766, 2014

Serna, J. Elaboración de jugos de fruta con adición de bacterias ácido lácticas con potencial probiótico. Tesis de grado, Universidad de la Sabana, 2012.

Piuri, M., Sanchez-Rivas, C., Ruzal, SM. Cell wall modifications during osmotic stress in Lactobacillus casei, J Appl Microbiol, 98(1), pp. 84–95, 2005.

Agudelo, A., Lucas, J., Quintero, V. Evaluación de los cambios de viscosidad en pulpa de mora (Rubus glaucus) tratada enzimáticamente, Agronomía Colombiana, 34(1Supl), pp. S626-S629, 2016.

Sora, A., Gerhard, F., Flórez, R. Almacenamiento refrigerado de frutos de mora de Castilla (Rubus glaucus Benth.) en empaques con atmósfera modificada, Agronomía Colombiana, 24(2), pp. 306-316, 2006.

Farinango, M. Estudio de la fisiología postcosecha de la mora de Castilla (Rubus glaucus Benth) y de la mora variedad brazos (Rubus spp.),Tesis de pregrado, Escuela Politécnica Nacional, 142 p. 2010

Galvis, B. Estudio de la durabilidad de la pulpa de mora de Castilla y mora San Antonio (Rubus glaucus), Tesis de grado, Universidad Nacional de Colombia, 79 p. 2003.

Ayala, C., Valenzuela, P., Bohórquez, Y. Caracterización fisicoquímica de mora de castilla ( Rubus glaucus Benth ) en seis estados de madurez. Biotecnol en el Sect Agropecu y Agroindustrial, 11(2) pp. 10–8, 2013.

Pereira, A., Maciel, T., Rodrigues, S. Probiotic beverage from cashew apple juice fermented with Lactobacillus casei. Food Res Int, 44(5), pp.1276–83, 2011.

Genovese, B., Lozano, J. The effect of hydrocolloids on the stability and viscosity of cloudy apple juices, Food colloids, 15, pp. 1–7. 2001.

Cómo citar

IEEE

[1]
Z. T. Marin Arango, M. Cortés Rodriguez, O. I. Montoya Campuzano, y J. C. Arango Tobón, «Viability of Lactobacillus casei ATCC 393 and properties in Andean blackberry suspensions with probiotic and prebiotic characteristics», DYNA, vol. 86, n.º 210, pp. 179–186, jul. 2019.

ACM

[1]
Marin Arango, Z.T., Cortés Rodriguez, M., Montoya Campuzano, O.I. y Arango Tobón, J.C. 2019. Viability of Lactobacillus casei ATCC 393 and properties in Andean blackberry suspensions with probiotic and prebiotic characteristics. DYNA. 86, 210 (jul. 2019), 179–186. DOI:https://doi.org/10.15446/dyna.v86n210.72929.

ACS

(1)
Marin Arango, Z. T.; Cortés Rodriguez, M.; Montoya Campuzano, O. I.; Arango Tobón, J. C. Viability of Lactobacillus casei ATCC 393 and properties in Andean blackberry suspensions with probiotic and prebiotic characteristics. DYNA 2019, 86, 179-186.

APA

Marin Arango, Z. T., Cortés Rodriguez, M., Montoya Campuzano, O. I., & Arango Tobón, J. C. (2019). Viability of Lactobacillus casei ATCC 393 and properties in Andean blackberry suspensions with probiotic and prebiotic characteristics. DYNA, 86(210), 179–186. https://doi.org/10.15446/dyna.v86n210.72929

ABNT

MARIN ARANGO, Z. T.; CORTÉS RODRIGUEZ, M.; MONTOYA CAMPUZANO, O. I.; ARANGO TOBÓN, J. C. Viability of Lactobacillus casei ATCC 393 and properties in Andean blackberry suspensions with probiotic and prebiotic characteristics. DYNA, [S. l.], v. 86, n. 210, p. 179–186, 2019. DOI: 10.15446/dyna.v86n210.72929. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/72929. Acesso em: 17 ago. 2022.

Chicago

Marin Arango, Zaira Tatiana, Misael Cortés Rodriguez, Olga Ines Montoya Campuzano, y Julio Cesar Arango Tobón. 2019. «Viability of Lactobacillus casei ATCC 393 and properties in Andean blackberry suspensions with probiotic and prebiotic characteristics». DYNA 86 (210):179-86. https://doi.org/10.15446/dyna.v86n210.72929.

Harvard

Marin Arango, Z. T., Cortés Rodriguez, M., Montoya Campuzano, O. I. y Arango Tobón, J. C. (2019) «Viability of Lactobacillus casei ATCC 393 and properties in Andean blackberry suspensions with probiotic and prebiotic characteristics», DYNA, 86(210), pp. 179–186. doi: 10.15446/dyna.v86n210.72929.

MLA

Marin Arango, Z. T., M. Cortés Rodriguez, O. I. Montoya Campuzano, y J. C. Arango Tobón. «Viability of Lactobacillus casei ATCC 393 and properties in Andean blackberry suspensions with probiotic and prebiotic characteristics». DYNA, vol. 86, n.º 210, julio de 2019, pp. 179-86, doi:10.15446/dyna.v86n210.72929.

Turabian

Marin Arango, Zaira Tatiana, Misael Cortés Rodriguez, Olga Ines Montoya Campuzano, y Julio Cesar Arango Tobón. «Viability of Lactobacillus casei ATCC 393 and properties in Andean blackberry suspensions with probiotic and prebiotic characteristics». DYNA 86, no. 210 (julio 1, 2019): 179–186. Accedido agosto 17, 2022. https://revistas.unal.edu.co/index.php/dyna/article/view/72929.

Vancouver

1.
Marin Arango ZT, Cortés Rodriguez M, Montoya Campuzano OI, Arango Tobón JC. Viability of Lactobacillus casei ATCC 393 and properties in Andean blackberry suspensions with probiotic and prebiotic characteristics. DYNA [Internet]. 1 de julio de 2019 [citado 17 de agosto de 2022];86(210):179-86. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/72929

Descargar cita

Dimensions

PlumX

Descargas

Los datos de descargas todavía no están disponibles.

Visitas a la página del resumen del artículo

488