Publicado

2020-03-13

Use of remotely piloted aircraft in precision agriculture: a review

Utilización de sistemas de aeronaves no tripuladas en agricultura de precisión: una revisión

DOI:

https://doi.org/10.15446/dyna.v86n210.74701

Palabras clave:

unmanned aircraft system (UAS), drone, photogrammetry (en)
sistema de aeronave no tripulada, drone, fotogrametría (es)

Descargas

Autores/as

The objective of this review was to examine the current use of remotely piloted aircraft (RPA) in obtaining data to assist in the application of precision farming techniques and to exemplify successful situations of technology use. The RPA has applications for monitoring, mapping, vegetation index (VI) extraction, volume, plant height, among others, and has been studied in several agricultural crops, being support for decision making on agrochemical application, planting failure, accompaniment of growth favoring the increase of crop productivity. One of the potentialities evaluated through RPA is the use of VI, which may be extracted from digital images obtained by cameras that contain only the visible band. It may be an alternative for farmers who do not have access to RPA coupled with high-tech embedded sensors. Therefore, it is a tool that may contribute to the decision making, allowing the acquisition of high spatial and temporal resolution images.

El objetivo de esta revisión fue examinar el uso actual de aeronaves pilotadas remotamente (RPA) en la obtención de datos para aplicaciones de la agricultura de precisión, ejemplificando situaciones exitosas de uso de la tecnología. La RPA tiene aplicaciones para monitoreo, mapeo, extracción de índice de vegetación (VI), volumen, altura de plantas, y ha sido estudiado en diversas culturas agrícolas, siendo soporte para toma de decisión sobre aplicación de agroquímicos, falla de plantación, acompañamiento del crecimiento y aumento de la productividad. Un potencial evaluadas por la RPA es el uso del VI, que puede ser extraído de imágenes digitales obtenidas por cámaras que contienen la banda visible. Siendo una alternativa para los agricultores que no tienen acceso a RPA acoplado a sensores de alta tecnología. Por lo tanto, es una herramienta que puede contribuir a la toma de decisiones, permitiendo la adquisición de imágenes de alta resolución espacial y temporal.

Referencias

Aber, J.S., Aber, S.W, Buster, L., Jensen, W.E. and Sleezer, R.L., Challenge of infrared kite aerial photography: a digital update. Transactions of the Kansas Academy of Science, 112(1), pp. 31-39, 2009. DOI: 10.1660/062.112.0205.

Bendig, J., Willkomm, M., Tilly, N., Gnyp, M.L., Bennertz, S., Qiang, C. and Bareth, G., Very high resolution crop surface models (CSMs) from UAV-based stereo images for rice growth monitoring in Northeast China. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1(2), pp. 45-50, 2013. DOI: 10.5194/isprsarchives-xl-1-w2-45-2013.

Candiago, S., Remondino, F., De Giglio, M., Dubbini, M. and Gattelli, M., Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing, 7(4), pp. 4026-4047, 2015. DOI: 10.3390/rs70404026.

Caradonna, G., Tarantino, E., Scaioni, M. and Figorito, B., Multi-image 3D reconstruction: a photogrammetric and structure from motion comparative analysis. Computational Science and its Applications – ICCSA, 10964, pp. 305-316, 2018. DOI: 10.1007/978-3-319-95174-4_25.

Castaldi, F., Pelosi, F., Pascucci, S. and Casa, R., Assessing the potential of images from unmanned aerial vehicles (UAV) to support herbicide patch spraying in maize. Precision Agriculture, 18(1), pp. 76-94, 2016. DOI: 10.1007/s1111.

Colomina, I. and Molina, P., Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, pp. 79-97, 2014. DOI: 10.1016/j.isprsjprs.2014.02.013.

Cristea, L., Luculescu, M.C., Zamfira1, S.C., Boer, A.L. and Pop, S., Multiple criteria analysis of remotely piloted aircraft systems for monitoring the crops vegetation status. IOP Conference Series: Materials Science and Engineering, 147(1), pp. 1-8, 2016. DOI: 10.1088/1757-899x/147/1/012059.

Getzin, S., Wiegand K. and Schöning, I., Assessing biodiversity in forests using very high‐resolution images and unmanned aerial

vehicles. Methods in Ecology and Evolution, 3(2), pp. 397-404, 2012. DOI: 10.1111/j.2041-210x.2011.00158.x.

Giles, D.K., Use of remotely piloted aircraft for pesticide applications: Issues and outlook. Outlooks on Pest Management, 27(5), pp. 213-216, 2016. DOI: 10.1564/v27_oct_05.

Gómez-Candón, D., Virlet, N., Labbé, S., Jolivot, A. and Regnard, J.L., Field phenotyping of water stress at tree scale by UAV-sensed imagery: new insights for thermal acquisition and calibration. Precision agriculture, 17(6), pp. 786-800, 2016. DOI: 10.5194/isprsarchives-xl-1-w2-157-2013.

Gonçalves, L.M., Barbosa, B.D.S., Ferraz, G.A.ES., Maciel, D.T. and Santos, H.F.D., Space and temporary variability of the index vegetation applied to images obtained by a remotely piloted aircraf. Revista Brasileira de Engenharia de Biossistemas, 11(4), pp. 340-349, 2017. DOI: 10.18011/bioeng2017v11n4p340-349.

Hardin, P.J. and Hardin, T.J., Small‐scale remotely piloted vehicles in environmental research. Geography Compass, 4(9), pp.1297-1311, 2010. DOI: 10.1111/j.1749-8198.2010.00381.x.

Hardin, P.J. and Jackson, M.W., An unmanned aerial vehicle for rangeland photography. Rangeland Ecology & Management, 58(4), pp. 439-442, 2005. DOI: 10.2111/1551-5028(2005)058[0439:auavfr]2.0.co;2.

Hernandez-Lopez, D., Felipe-Garcia, B., Gonzalez-Aguilera, D. and Arias-Perez, B., An automatic approach to UAV flight planning and control for photogrammetric applications. Photogrammetric Engineering & Remote Sensing, 79(1), pp. 87-98, 2013. DOI: 10.14358/pers.79.1.87.

Herwitz, S., Johnson, L., Dunagan, S., Higgins, R., Sullivan, D., Zheng, J., Lobitz, B., Leung, J., Gallmeyer, B. and Aoyagi, M., Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support. Computers and Electronics in Agriculture, 44(1), pp. 49-61, 2004. DOI: 10.1016/j.compag.2004.02.006.

Honkavaara, E., Saari, H., Kaivosoja, J., Pölönen, I., Hakala, T., Litkey, P., Mäkynen, J. and Pesonen, L., Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture. Remote Sensing, 5(10), pp. 5006-5039, 2013. DOI: 10.3390/rs5105006.

Hugenholtz, C.H., Whitehead, K., Brown, O.W., Barchyn, T.E., Moorman, B.J., LeClair, A., Riddell, K. and Hamilton, T., Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically derived digital terrain model. Geomorphology, 194, pp. 16-24, 2013. DOI: 10.1016/j.geomorph.2013.03.023.

Hunt, E.R., Cavigelli, M., Daughtry, C.S., Mcmurtrey, J.E. and Walthall, C.L., Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agriculture, 6(4), pp. 359-378, 2005.

Hunt, E.R., Hively, W.D., Daughtry, C.S., McCarty, G.W., Fujikawa, S.J., Ng, T.L. and Yoel, D.W., Remote sensing of crop leaf area index using unmanned airborne vehicles. In: Proceedings of the Pecora, 17 Symposium, Denver, Colorado, U.S.A., [online]. 2008. Available at: https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Remote+sensing+of+crop+leaf+area+index+using+unmanned+airborne+vehicles.+&btnG=>. Accessed: Ago. 15, 2016.

ICAO- International Civil Aviation Organization. Circular 328: Unmanned Aircraft Systems (UAS). 2011. ISBN 978-92-9231-751-5.

Inoue, Y., Morinaga, S. and Tomita, A., A blimp-based remote sensing system for low-altitude monitoring of plant variables: a preliminary experiment for agricultural and ecological applications. International Journal of Remote Sensing, 21(2), pp. 379-385, 2000. DOI: 10.1080/014311600210894.

Johnson, L., Herwitz, S., Lobitz, B. and Dunagan, S., Feasibility of monitoring coffee field ripeness with airborne multispectral imagery. Applied Engineering in Agriculture, 20(6), pp. 845, 2004. DOI: 10.13031/2013.17718.

Laliberte, A.S., Herrick, J.E., Rango, A. and Winters, C., Acquisition, orthorectification, and object-based classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring. Photogrammetric Engineering & Remote Sensing, 76(6), pp. 661-672, 2010. DOI: 10.14358/pers.76.6.661.

Laliberte, A.S. and Rango, A., Image processing and classification procedures for analysis of sub-decimeter imagery acquired with an unmanned aircraft over arid rangelands. GIScience & Remote Sensing, 48(1), pp. 4-23, 2011. DOI: 10.2747/1548-1603.48.1.4. [25] Liaghat, S. and Balasundram, S.K. A review: the role of remote sensing in precision agriculture. American Journal of Agricultural and Biological Sciences, 5(1), pp. 50-55, 2010. DOI: 10.3844/ajabssp.2010.50.55.

López-Granados, F., Torres-Sánchez, J., De Castro, A.I., Serrano-Pérez, A., Mesas-Carrascosa, F.J. and Peña, J.M., Object-based early monitoring of a grass weed in a grass crop using high resolution UAV imagery. Agronomy for Sustainable Development, 36(4), pp. 36-67, 2016. DOI: 10.1007/s13593-016-0405-7.

Mesas-Carrascosa, F.J., Notario-García, M.D., Meroño-de Larriva, J.E. and García-Ferrer, A., An analysis of the influence of flight parameters in the generation of unmanned aerial vehicle (UAV) orthomosaicks to survey archaeological areas. Sensors, 16(11), pp. 1-14, 2016. DOI: 10.3390/s16111838.

Mulla, D.J., Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosystems Engineering, 114(4), pp. 358-371, 2013. DOI: 10.1016/j.biosystemseng.2012.08.009.

Nex, F. and Remondino, F., UAV for 3D mapping applications: a review. Applied Geomatics, 6(1), pp. 1-15, 2014. DOI: 10.1007/s12518-013-0120-x.

Nijland, W., de Jong, R., de Jong, S.M., Wulder, M.A., Bater, C.W. and Coops, N.C., Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras. Agricultural and Forest Meteorology, 184, pp. 98-106, 2014. DOI: 10.1016/j.agrformet.2013.09.007.

Pena, J.M., Torres-Sánchez, J., de Castro, A.I., Kelly, M. and López-Granados, F., Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PloS One, 8(10), pp. e77151, 2013. DOI: 10.1371/journal.pone.0077151.

Primicerio, J., Di Gennaro, S.F., Fiorillo, E., Genesio, L., Lugato, E., Matese, A. and Vaccari, F.P., A flexible unmanned aerial vehicle for precision agriculture. Precision Agriculture, 13(4), pp. 517-523, 2012. DOI: 10.1007/s11119-012-9257-6.

Rango, A., Laliberte, A., Steele, C., Herrick, J.E., Bestelmeyer, B., Schmugge, T., Roanhorse, A. and Jenkins, V., Using unmanned aerial vehicles for rangelands: current applications and future potentials. Environmental Practice, 8(3), pp. 159-168, 2006. DOI: 10.1017/s1466046606060224.

Rango, A., Laliberte, A., Herrick, J.E., Winters, C., Havstad, K., Steele, C. and Browning, D., Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management. Journal of Applied Remote Sensing, 3(1), pp. e33542, 2009. DOI: 10.1117/1.3216822

Rodríguez, A., Negro, J.J., Mulero, M., Rodríguez, C., Hernández-Pliego, J. and Bustamante, J., The eye in the sky: combined use of unmanned aerial systems and GPS data loggers for ecological research and conservation of small birds. PLoS One, 7(12), pp. e50336, 2012. DOI: 10.1371/journal.pone.0050336.

Romero, V.R., Villareal, A.M., León, J.L.T. y Hernández, A.H., Perspectivas de la tecnología VANT en el cultivo de palma de aceite: monitorización del cultivo mediante imágenes aéreas de alta resolución. Revista Palmas, 36(3), pp. 25-41, 2015.

Sabina, J.A.R., Valle, D.G., Ruiz, C.P., García, J.M.M. y Laguna, A.G., Fotogrametría aérea por drone en yacimientos con grandes estructuras. Propuesta metodológica y aplicación práctica en los castillos medievales del Campo de Montiel. Virtual Archaeology Review, 6(13), pp. 5-19, 2015.

Severtson, D., Callow, N., Flower, K., Neuhaus, A., Olejnik, M. and Nansen, C., Unmanned aerial vehicle canopy reflectance data detects potassium deficiency and green peach aphid susceptibility in canola. Precision Agriculture, 17(6), pp. 659-677, 2016. DOI: 10.1007/s11119-016-9442-0.

Siebert, S. and Teizer, J., Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Automation in Construction, 41, pp. 1-14, 2014. DOI: 10.1016/j.autcon.2014.01.004.

Tokekar, P., Vander-Hook, J., Mulla, D., Isler, V., Sensor planning for a symbiotic UAV and UGV system for precision agriculture. IEEE Transactions on Robotics, 32(6), pp. 1498-1511, 2016. DOI: 10.1109/tro.2016.2603528.

Torres-Sánchez, J., López-Granados, F., De Castro, A.I. and Peña-Barragán, J.M., Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management. PloS One, 8(3), pp. e58210, 2013. DOI: 10.1371/journal.pone.0058210.

Torres-Sánchez, J., Peña, J.M., de Castro, A.I. and López-Granados. F., Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Computers and Electronics in Agriculture, 103, pp. 104-113, 2014. DOI: 10.1016/j.compag.2014.02.009.

Tugi, A., Rasib, A.W., Suri, M.A., Zainon, O., Yusoff, A.R.M., Rahman, M.Z.A. and Darwin, N., Oil palm tree growth monitoring for smallholders by using unmanned aerial vehicle. Journal Teknologi, 77(26), pp. 17-27, 2015.

Turner, D., Lucieer, A. and De Jong, S.M., Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV). Remote Sensing, 7(2), pp. 1736-1757, 2015. DOI: 10.3390/rs70201736.

Urban, J., What is the eye in the sky actually looking at and who is controlling it? Regulatory opportunities in US drone law-an international comparative analysis on how to fill the cybersecurity and privacy gaps to strengthen existing US drone laws. Federal Communications Law Journal, SSRN Electronic Journal, [online]. pp. 1-76, 2017. DOI: 10.2139/ssrn.2964559.

Uysal, M., Toprak, A. and Polat, N., DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement, 73, pp. 539-543, 2015. DOI: 10.1016/j.measurement.2015.06.010.

Vericat, D., Brasington, J., Wheaton, J. and Cowie, M., Accuracy assessment of aerial photographs acquired using lighter‐than‐air blimps: low‐cost tools for mapping river corridors. River Research and Applications, 25(8), pp. 985-1000, 2009. DOI: 10.1002/rra.1198.

Vierling, L.A., Fersdahl, M., Chen, X., Li, Z. and Zimmerman, P., The Short Wave Aerostat-Mounted Imager (SWAMI): a novel platform for acquiring remotely sensed data from a tethered balloon. Remote Sensing of Environment, 103(3), pp. 255-264, 2006. DOI: 10.1016/j.rse.2005.01.021.

Wallace, L., Lucieer, A., Malenovský, Z., Turner, D. and Vopěnka, P., Assessment of forest structure using two UAV techniques: a comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests, 7(3), pp. 1-16, 2016. DOI: 10.3390/f7030062.

Wang, J., Ge, Y., Heuvelink, G.B., Zhou, C. and Brus, D., Effect of the sampling design of ground control points on the geometric correction of remotely sensed imagery. International Journal of Applied Earth Observation and Geoinformation, 18, pp. 91-100, 2012. DOI: 10.1016/j.jag.2012.01.001.

Wang, H., Li, J., Wang, L., Guan, H. and Geng, Z., Automated mosaicking of UAV images based on SFM method. In Geoscience and Remote Sensing Symposium (IGARSS), IEEE International, 2014, pp. 2633-2636. DOI: 10.1109/igarss.2014.6947014.

Whitehead, K. and Hugenholtz, C.H., Remote sensing of the environment with small unmanned aircraft systems (UASs), Part 1: a review of progress and challenges. Journal of Unmanned Vehicle Systems, 2(3), pp. 69-85, 2014. DOI: 10.1139/juvs-2014-0006.

Wundram, D. and Löffler, J., High‐resolution spatial analysis of mountain landscapes using a low‐altitude remote sensing approach. International Journal of Remote Sensing, 29(4), pp. 961-974, 2008. DOI: 10.1080/01431160701352113.

Xiang, H. and Tian, L., Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform. Biosystems Engineering, 108(2), pp. 104-113, 2011. DOI: 10.1016/j.biosystemseng.2010.11.003.

Yang, Z., Willis, P. and Mueller, R., Impact of band-ratio enhanced AWIFS image to crop classification accuracy. In Proc. Pecora, 17(1), pp. 1-11, 2008.

Zajkowski, T.J., Dickinson, M.B., Hiers, J.K., Holley, W., Williams, B.W., Paxton, A., Martinez, O. and Walker, G.W., Evaluation and use of remotely piloted aircraft systems for operations and research–RxCADRE 2012. International Journal of Wildland Fire, 25(1), pp.114-128, 2016. DOI: 10.1071/WF14176.

Zhang, C. and Kovacs, J.M., The application of small unmanned aerial systems for precision agriculture: a review. Precision agriculture, 13(6), pp. 693-712, 2012. DOI: 10.1007/s11119-012-9274-5.

Cómo citar

IEEE

[1]
L. M. dos Santos, G. A. e S. Ferraz, B. D. S. Barbosa, y A. D. Andrade, «Use of remotely piloted aircraft in precision agriculture: a review», DYNA, vol. 86, n.º 210, pp. 284–291, jul. 2019.

ACM

[1]
dos Santos, L.M., Ferraz, G.A. e S., Barbosa, B.D.S. y Andrade, A.D. 2019. Use of remotely piloted aircraft in precision agriculture: a review. DYNA. 86, 210 (jul. 2019), 284–291. DOI:https://doi.org/10.15446/dyna.v86n210.74701.

ACS

(1)
dos Santos, L. M.; Ferraz, G. A. e S.; Barbosa, B. D. S.; Andrade, A. D. Use of remotely piloted aircraft in precision agriculture: a review. DYNA 2019, 86, 284-291.

APA

dos Santos, L. M., Ferraz, G. A. e S., Barbosa, B. D. S., & Andrade, A. D. (2019). Use of remotely piloted aircraft in precision agriculture: a review. DYNA, 86(210), 284–291. https://doi.org/10.15446/dyna.v86n210.74701

ABNT

DOS SANTOS, L. M.; FERRAZ, G. A. e S.; BARBOSA, B. D. S.; ANDRADE, A. D. Use of remotely piloted aircraft in precision agriculture: a review. DYNA, [S. l.], v. 86, n. 210, p. 284–291, 2019. DOI: 10.15446/dyna.v86n210.74701. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/74701. Acesso em: 17 ago. 2022.

Chicago

dos Santos, Luana Mendes, Gabriel Araújo e Silva Ferraz, Brenon Diennevan Souza Barbosa, y Alan Delon Andrade. 2019. «Use of remotely piloted aircraft in precision agriculture: a review». DYNA 86 (210):284-91. https://doi.org/10.15446/dyna.v86n210.74701.

Harvard

dos Santos, L. M., Ferraz, G. A. e S., Barbosa, B. D. S. y Andrade, A. D. (2019) «Use of remotely piloted aircraft in precision agriculture: a review», DYNA, 86(210), pp. 284–291. doi: 10.15446/dyna.v86n210.74701.

MLA

dos Santos, L. M., G. A. e S. Ferraz, B. D. S. Barbosa, y A. D. Andrade. «Use of remotely piloted aircraft in precision agriculture: a review». DYNA, vol. 86, n.º 210, julio de 2019, pp. 284-91, doi:10.15446/dyna.v86n210.74701.

Turabian

dos Santos, Luana Mendes, Gabriel Araújo e Silva Ferraz, Brenon Diennevan Souza Barbosa, y Alan Delon Andrade. «Use of remotely piloted aircraft in precision agriculture: a review». DYNA 86, no. 210 (julio 1, 2019): 284–291. Accedido agosto 17, 2022. https://revistas.unal.edu.co/index.php/dyna/article/view/74701.

Vancouver

1.
dos Santos LM, Ferraz GA e S, Barbosa BDS, Andrade AD. Use of remotely piloted aircraft in precision agriculture: a review. DYNA [Internet]. 1 de julio de 2019 [citado 17 de agosto de 2022];86(210):284-91. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/74701

Descargar cita

Dimensions

PlumX

Descargas

Los datos de descargas todavía no están disponibles.

Visitas a la página del resumen del artículo

848