Framework for Big Data integration in e-government

Marco de referencia para la integración de Big Data en gobierno electrónico


Palabras clave:

big data, e-government, integration, framework, reference (en)
big data, e-gobierno, e-government, integración, marco, referencia (es)



This article describes researches regarding Big Data integration in e‑government decision‑making, for instance, in areas like solar energy provisioning, environmental protection, agricultural and natural resources exploitation, health and social care, education, housing and transportation management, among others. These studies refer to regions that have integrated Big Data in e‑government, where South America is still in the early adoption stages. Hence, this study proposes three steppingstones for Big Data integration in e‑government decision‑making, production, management and application. The proposed framework aims to be a reference in South America for Big Data adoption in e‑government and thus help to mitigate the technology delay regarding other regions. Finally, a case study with open data obtained from the Instituto Nacional de Estadística y Censos of Ecuador (Ecuadorian Statistics and Census Agency) is presented.

En el presente artículo se describen algunos estudios que incorporan Big Data en la toma de decisiones de gobierno electrónico como, por ejemplo, provisión de energía solar, protección del ambiente, producción agrícola, explotación de petróleo, gestión de salud, educación, vivienda y transporte, entre otros. Estos estudios corresponden a regiones que han integrado Big Data en gobierno electrónico. Sudamérica se encuentra aún en proceso de adopción. Por esta razón, el presente estudio propone un marco de integración de Big Data en la toma de decisiones de gobierno electrónico, que consta de tres etapas: la producción, la gestión y la aplicación de Big Data. El marco propuesto pretende servir de referencia para la adopción de Big Data en el gobierno electrónico y así ayudar a disminuir el retraso de Sudamérica con respecto a otras regiones. Finalmente, se presenta un estudio de caso en Ecuador, con datos abiertos del banco de datos del Instituto Nacional de Estadística y Censos.


Assunção, M. et al., Big Data computing and clouds: trends and future

directions, Journal of Parallel and Distributed Computing, 79, pp. 3-

, 2016. DOI: 10.1016/j.jpdc.2014.08.003

Khalifa, S. et al., The six pillars for building Big Data analytics

ecosystems, ACM Computing Surveys, 49(2), pp. 33:1-33:35, 2016.

DOI: 10.1145/2963143

Seo, J.Y. and Lee, H.M., A study on statistical map of air pollution in

Korea using R, Proceedings of the 4th International Conference on

Computer Applications and Information Processing Technology,

, pp. 1-5. DOI: 10.1109/CAIPT.2017.8320675

Zuo, J. et al., Using Big Data from air quality monitors to evaluate

indoor PM 2.5 exposure in buildings: case study in Beijing,

Enviromental Pollution, 240, pp. 839-847, 2018. DOI:


Kim, P.W., Operating an environmentally sustainable city using fine

dust level Big Data measured at individual elementary schools,

Sustainable Cities and Society, 37, pp. 1-6, 2018, DOI:


Abella, A., Ortiz-de-Urbina-Criado, M. and De-Pablos-Heredero, C.,

A model for the analysis of data-driven innovation and value

generation in smart cities’ ecosystems, Cities, 64, pp. 47-53, 2017.

DOI: 10.1016/j.cities.2017.01.011

Latin American Big Data and analytics market, forecast to 2023,

Research and Markets, [online]. 2018. Available at:


Hwang, T., How big and open data can transform Latin America,

World Economy Forum on Latin America, [online]. 2018. Available



United Nations. World population projected to reach 9.8 billion in

, and 11.2 billion in 2100, [online]. 2017. Available at:


Escudero, S., Big Data como mejora competitiva para la gestión de la

información en la Agricultura Argentina, Universidad de San Andrés,

[en línea]. 2015. Disponible en:

Torres, J.F., Troncoso, A., Koprinska, I., Wang, Z. and MartínezÁlvarez,

F., Deep learning for Big Data time series forecasting

applied to solar power, Proceedings of the 13th International

Conference on Soft Computing Models in Industrial and

Environmental Applications, pp. 123-133, 2018. DOI: 10.1007/978-


Ghaemi, Z., Alimohammadi, A. and Farnaghi, M., LaSVM-based Big

Data learning system for dynamic prediction of air pollution in

Tehran, Environmental Monitoring and Assessment, 190(5), pp. 1-17,

DOI: 10.1007/s10661-018-6659-6

Kuo, C., Pan, R.H., Chan, C.K., Wu, C., Phan, D.V. and Chan, C.L.,

Application of a time-stratified case-crossover design to explore the

effects of air pollution and season on childhood asthma

hospitalization in cities of differing urban patterns: Big Data analytics

of government open data, International Journal of Environmental

Research and Public Health, 15(4), pp. 1-15, 2018. DOI:


Bougoudis, I., Demertzis, K., Iliadis, L., Anezakis, V.D. and

Papaleonidas, A., FuSSFFra, a fuzzy semi-supervised forecasting

framework: the case of the air pollution in Athens, Neural Computing

and Applications, 29(7), pp. 375-388, 2018. DOI: 10.1007/s00521-


Lu, H., Song, J., Di, T.J., Kurdestany, M. and Wang, H., A deep belief

network based model for urban haze prediction, Tehnički vjesnik,

(2), pp. 519-527, 2018. DOI: 10.17559/TV-20180204162632

Wu, Y., Zhang, W., Sheng, J., Mo, Z. and Peng, Y., Smart city with

Chinese characteristics against the background of big data: idea,

action and risk, Journal of Cleaner Production, 173, pp. 60-66, 2018.

DOI: 10.1016/j.jclepro.2017.01.047

Zaree, T. and Honarvar, A.R., Improvement of air pollution prediction

in a smart city and its correlation with weather conditions using

metrological big data, Journal of Electrical Engineering and

Computer Sciences, 26(3), pp. 1302-1313, 2018.

Uhomoibhi, J. and White, C., Data visualization and enhanced

learning in engineering education through oil pollution studies and

environmental impact assessment, Proceedings of the International

Conference on Interactive Collaborative Learning, pp. 271-281, 2017.

DOI: 10.1007/978-3-319-73204-6_31

Kim, C., Park, S.H. and Ha, Y.G., Correlation analysis between

vehicular traffic and PM using sensor Big Data, Proceedings of the

IEEE International Conference on Big Data and Smart Computing,

pp. 644-648, 2018. DOI: 10.1109/BigComp.2018.00116

Jiang, P., Liu, L., Li, H. and Shi, Y., Congestion prediction of urban

traffic employing SRBDP, Proceedings of the IEEE International

Symposium on Parallel and Distributed Processing with Applications,

pp. 1099-1106, 2017. DOI: 10.1109/ISPA/IUCC.2017.00166

Santi D. et al., Seasonal variation of semen parameters correlates with

environmental temperature and air pollution: a Big Data analysis over

years, Environmental Pollution, 235, pp. 806-813, 2018. DOI:


Zhang, Y. and Mi, Z., Environmental benefits of bike sharing: a big

databased analysis, Applied Energy, 220, pp. 296-301, 2018. DOI:


Cheng, J. and Liu, Y., The effects of public attention on the

environmental performance of high-polluting firms: based on big data

from web search in China, Journal of Cleaner Production, 186, pp.

-341, 2018. DOI: 10.1016/j.jclepro.2018.03.146

Jinbo, C., Yu, Z. and Lam, A., Research on monitoring platform of

agricultural product circulation efficiency supported by cloud

computing, Wireless Personal Communications, 102(4), pp. 3573-

, 2018. DOI: 10.1007/s11277-018-5392-3

Wright, N.H., Tracking corporate stewardship of environmental

services-opportunities of Big Data applications and long term value,

Proceedings of the International Conference and Exhibition on

Health, Safety, Security, Environment, and Social Responsibility, pp.

-7, 2018. DOI: 10.2118/190572-MS

Yang, L., A literature review of the impact of corruption on economic

growth based on Big Data, Boletín Técnico, 55(19), pp. 561-569,

Holm, S. and Ploug, T., Big Data and health research-The governance

challenges in a mixed data economy, Journal of Bioethical Inquiry,

(4), pp. 515-525, 2017. DOI: 10.1007/s11673-017-9810-0

Tseng, F., Hsueh, J., Tseng, C., Yang, Y., Chao, H. and Chou, L.,

Congestion prediction with Big Data for real-time highway traffic,

Martinez-Mosquera & Luján-Mora / Revista DYNA, 86(209), pp. 215-224, April - June, 2019.

IEEE Access, 6, pp. 57311-57323, 2018. DOI:


Sánchez, L., Vásquez, C., Viloria, A. and Meza-Estrada, C.,

Conglomerates of Latin American countries and public policies for

the sustainable development of the electric power generation sector.

Proceedings of the International Conference in Data Mining and Big

Data, pp. 759-766, 2018. DOI: 10.1007/978-3-319-93803-5_71

Lopez, F., Bonfante, M., Gonzalez, I. and Muñoz, R., IoT and Big

Data in public health: a case study in Colombia, Protocols and

Applications for the Industrial Internet of Things, pp. 309-321, 2018.

DOI: 10.4018/978-1-5225-3805-9

Trujillo, J. and Luján-Mora, S., A UML based approach for modeling

ETL processes in data warehouses. Proceedings of the 22nd

International Conference on Conceptual Modeling, pp. 307-320,

DOI: 10.1007/978-3-540-39648-2_25

Luján-Mora, S. and Palomar, M., Reducing inconsistency in

integrating data from different sources. Proceedings of the

International Database Engineering and Applications Symposium, pp.

-218, 2001. DOI: 10.1109/IDEAS.2001.938087

Object Management Group, Model Driven Architecture (MDA)

MDA Guide rev. 2.0. [online]. Available at:

Coto, A., Elizabeth, Y., y Martínez, A.E., La gestión de desechos de

luminarias, análisis de los casos de Brasil y España. Perspectivas para

El Salvador según diagnóstico de uso y disposición, Tesis de grado.

Universidad Don Bosco, 2011, pp. 1-28.

Henriksen, H.Z., One step forward and two steps back: E-government

policies in practice. policy analytics, modelling, and informatics.

Public Administration and Information Technology, 25, Springer,

Cham, 2018, DOI: 10.1007/978-3-319-61762-6_4

Bertot, J., Gorham, U., Jaeger, P., Sarin, L. and Choi, H., Big data,

open government and e-government: issues, policies and

recommendations, Information Polity, 19(1,2), pp. 5-16, 2014. DOI:


Bertot, J. and Choi, H., Big data and e-government: issues, policies,

and recommendations. Proceedings of the 14th Annual International

Conference on Digital Government Research, pp. 1-10, 2013. DOI:


Yu-Che, C. and Tsui-Chuan, H., Big Data for Digital government:

opportunities, challenges, and strategies, International Journal of

Public Administration in the Digital Age, 1(1), pp. 1-14, 2014. DOI:


Gang-Hoon, K., Silvana, T. and Ji-Hyong, C., Big-Data applications

in the government sector, Communications of the ACM, 57(3), pp.

-85, 2014. DOI: 10.1145/2500873

Consejo Nacional de Planificación del Ecuador. Plan Nacional de

Desarrollo 2017-2021, [en línea]. 2017. Disponible en:



Morán, C. and Cañarte, T., Las PYMEs y su incorporación en las

TICs, Manta, Ecuador, Dominio de las Ciencias, 3(3), pp. 734-741,

Autor corporativo: Revista Líderes. El big data le hace un zoom al

consumidor. Revista Líderes. [en línea]. 2013. Disponible en:


Romero, D., El ‘big data’ cambia los negocios en la plaza Foch, en

Quito. Diario EL COMERCIO. [en línea]. 2018.

Disponible en:


Brobst, S., Las empresas que no utilicen Big Data no sobrevivirán en

la economía moderna, ComputerWorld, [en línea]. 2018. Disponible



Secretaría Nacional de la Administración Pública. Guía de política

pública de datos abiertos. [en línea]. 2014. Disponible en:



Jauk, S., Kramer, D. and Leodolter, W., Cleansing and imputation of

body mass index data and its impact on a machine learning based

prediction model. Proceedings of the 12th eHealth Conference, pp.

-123, 2018. DOI: 10.3233/978-1-61499-858-7-116

Krause, R.W., Huisman, M., Steglich, C. and Sniiders, T.A., Missing

network data a comparison of different imputation methods.

Proceedings of IEEE/ACM International Conference on Advances in

Social Networks Analysis and Mining, pp. 159-163, 2018. DOI:


Iribarme, R., Tratamiento de sólidos, los residuos en el contexto de la

luminotecnia. [en línea]. 2002. Sicanews. Disponible en:


Cómo citar


D. Martinez-Mosquera y S. Luján-Mora, «Framework for Big Data integration in e-government», DYNA, vol. 86, n.º 209, pp. 215–224, abr. 2019.


Martinez-Mosquera, D. y Luján-Mora, S. 2019. Framework for Big Data integration in e-government. DYNA. 86, 209 (abr. 2019), 215–224. DOI:


Martinez-Mosquera, D.; Luján-Mora, S. Framework for Big Data integration in e-government. DYNA 2019, 86, 215-224.


Martinez-Mosquera, D., & Luján-Mora, S. (2019). Framework for Big Data integration in e-government. DYNA, 86(209), 215–224.


MARTINEZ-MOSQUERA, D.; LUJÁN-MORA, S. Framework for Big Data integration in e-government. DYNA, [S. l.], v. 86, n. 209, p. 215–224, 2019. DOI: 10.15446/dyna.v86n209.77902. Disponível em: Acesso em: 23 ene. 2022.


Martinez-Mosquera, Diana, y Sergio Luján-Mora. 2019. «Framework for Big Data integration in e-government». DYNA 86 (209):215-24.


Martinez-Mosquera, D. y Luján-Mora, S. (2019) «Framework for Big Data integration in e-government», DYNA, 86(209), pp. 215–224. doi: 10.15446/dyna.v86n209.77902.


Martinez-Mosquera, D., y S. Luján-Mora. «Framework for Big Data integration in e-government». DYNA, vol. 86, n.º 209, abril de 2019, pp. 215-24, doi:10.15446/dyna.v86n209.77902.


Martinez-Mosquera, Diana, y Sergio Luján-Mora. «Framework for Big Data integration in e-government». DYNA 86, no. 209 (abril 1, 2019): 215–224. Accedido enero 23, 2022.


Martinez-Mosquera D, Luján-Mora S. Framework for Big Data integration in e-government. DYNA [Internet]. 1 de abril de 2019 [citado 23 de enero de 2022];86(209):215-24. Disponible en:

Descargar cita

CrossRef Cited-by

CrossRef citations1

1. Diana Martinez-Mosquera, Sergio Luján-Mora. (2019). Framework for Big Data integration in e-government. DYNA, 86(209), p.215.




Los datos de descargas todavía no están disponibles.

Visitas a la página del resumen del artículo