Publicado

2019-10-01

Design and manufacturing of an ultrasonic reactor for biodiesel obtaining by transesterification

Diseño y fabricación de un reactor ultrasónico para obtención de biodiesel por transesterificación

DOI:

https://doi.org/10.15446/dyna.v86n211.78518

Palabras clave:

Ultrasound, Transesterification, Biodiesel, Modular development, Efficiency (en)
Ultrasonido, Transesterificación, Biodiesel, Desarrollo modular, Eficiencia (es)

Descargas

Autores/as

It presents the design, development, and implementation of the ultrasonic reactor in laboratory level for batch transesterification with temperature variation, with a mechanic and electronic modular development, its operational characteristics were obtained through commercial equipment revision. To evaluate its performance, a mixture was made using castor oil, methanol, and potassium hydroxide, to obtain biodiesel and glycerin; by taking the glycerin stoichiometric value obtained in the reaction as the reference production value, an efficiency of 97% was reached with only the ultrasound incidence; in the processes with external temperature incidence, it was observed that it influences the reaction speed, since the stabilization times are around 30% less than the other observed processes.

Se presenta el diseño, desarrollo e implementación de un reactor ultrasónico a nivel de laboratorio para transesterificación por lotes con variación de temperatura; por medio de un desarrollo modular mecánico y electrónico, cuyas características de operación se obtuvieron a partir de una revisión de equipos comerciales. Para evaluar su desempeño se realiza una mezcla de aceite de higuerilla, metanol e hidróxido de potasio, para obtener biodiesel y glicerina; tomando el valor estequiométrico de la glicerina obtenida en la reacción como valor de referencia de producción, se alcanza un 97% de eficiencia con sólo la incidencia del ultrasonido, en los procesos con incidencia de temperatura externa se observa que esta influye en la velocidad de reacción, ya que los tiempos de estabilización son alrededor del 30% menores respecto a los demás procesos observados.

Referencias

P. Benjumea, J. Agudelo, and L. Corredor, “Biodiesel de aceite de palma: una alternativa para el desarrollo del país y para la autosuficiencia energética nacional,” Rev. Fac. Ing., no. 28, pp. 50–61, 2016.

A. F. González, I. C. Jiménez, M. Rodríguez Susa, S. Restrepo, and J. M. Gómez, “Biocombustibles de segunda generación y Biodiesel: Una mirada a la contribución de la Universidad de los Andes,” Rev. Ing., no. 28, 2008.

“Producción de aceite - PROCOLOMBIA,” 2018. [Online]. Available: http://www.procolombia.co/compradores/es/explore-oportunidades/producci-n-de-aceite. [Accessed: 11-Dec-2018].

C. Franco, A. Flórez, and M. Ochoa, “Análisis de la cadena de suministros de biocombustibles en Colombia,” Rev. Dinámica Sist., vol. 4, no. 2, pp. 109–133, 2008.

J. L. Coy, J. V. Jurado, S. H. Velásquez, and E. B. Acevedo, Análisis del sector biodiesel en Colombia y su cadena de suministro. Universidad del Norte, 2015.

M. R. Avhad and J. M. Marchetti, “A review on recent advancement in catalytic materials for biodiesel production,” Renew. Sustain. Energy Rev., vol. 50, pp. 696–718, 2015.

S. H. Barghi, T. T. Tsotsis, and M. Sahimi, “Chemisorption, physisorption and hysteresis during hydrogen storage in carbon nanotubes,” Int. J. Hydrogen Energy, vol. 39, no. 3, pp. 1390–1397, 2014.

A. N. Brasil, L. S. Oliveira, and A. S. Franca, “Circulation flow reactor with ultrasound irradiation for the transesterification of vegetable oils,” Renew. Energy, vol. 83, pp. 1059–1065, 2015.

C. A. G. Quispe, C. J. R. Coronado, and J. A. Carvalho Jr, “Glycerol: production, consumption, prices, characterization and new trends in combustion,” Renew. Sustain. Energy Rev., vol. 27, pp. 475–493, 2013.

D. Kumar and A. Ali, “Direct synthesis of fatty acid alkanolamides and fatty acid alkyl esters from high free fatty acid containing triglycerides as lubricity improvers using heterogeneous catalyst,” Fuel, vol. 159, pp. 845–853, 2015.

A. F. Lee, J. A. Bennett, J. C. Manayil, and K. Wilson, “Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification,” Chem. Soc. Rev., vol. 43, no. 22, pp. 7887–7916, 2014.

O. Babajide, L. Petrik, and F. Ameer, “Technologies for biodiesel production in Sub-Saharan African countries,” in Biofuels-Status and Perspective, InTech, 2015.

R. Mythili, P. Venkatachalam, P. Subramanian, and D. Uma, “Production characterization and efficiency of biodiesel: a review,” Int. J. energy Res., vol. 38, no. 10, pp. 1233–1259, 2014.

A. K. Agarwal, J. G. Gupta, and A. Dhar, “Potential and challenges for large-scale application of biodiesel in automotive sector,” Prog. Energy Combust. Sci., vol. 61, pp. 113–149, 2017.

G. Lourinho and P. Brito, “Advanced biodiesel production technologies: novel developments,” Rev. Environ. Sci. Bio/Technology, vol. 14, no. 2, pp. 287–316, 2015.

J. Luo, Z. Fang, and R. L. Smith Jr, “Ultrasound-enhanced conversion of biomass to biofuels,” Prog. Energy Combust. Sci., vol. 41, pp. 56–93, 2014.

B. Singh, A. Guldhe, I. Rawat, and F. Bux, “Towards a sustainable approach for development of biodiesel from plant and microalgae,” Renew. Sustain. Energy Rev., vol. 29, pp. 216–245, 2014.

T. Issariyakul and A. K. Dalai, “Biodiesel from vegetable oils,” Renew. Sustain. Energy Rev., vol. 31, pp. 446–471, 2014.

D. Kumar, G. Kumar, C. P. Singh, and others, “Ultrasonic-assisted transesterification of Jatropha curcus oil using solid catalyst, Na/SiO 2,” Ultrason. Sonochem., vol. 17, no. 5, pp. 839–844, 2010.

M. Ashokkumar and F. Grieser, “Sonochemical preparation of colloids,” in Encyclopedia of Surface and Colloid Science, CRC Press, 2015, pp. 6773–6786.

D. Y. C. Leung, X. Wu, and M. K. H. Leung, “A review on biodiesel production using catalyzed transesterification,” Appl. Energy, vol. 87, no. 4, pp. 1083–1095, 2010.

E. F. Aransiola, T. V Ojumu, O. O. Oyekola, T. F. Madzimbamuto, and D. I. O. Ikhu-Omoregbe, “A review of current technology for biodiesel production: State of the art,” Biomass and bioenergy, vol. 61, pp. 276–297, 2014.

G. Knothe and L. F. Razon, “Biodiesel fuels,” Prog. Energy Combust. Sci., vol. 58, pp. 36–59, 2017.

“Hielscher Ultrasound Technology, Mezcla Ultrasónica para la Producción de Biodiesel.” Nov-2016.

“Ultrasonic Power Corporation , Mezcladores Ultrasónicos para la Producción de Biodiesel}.” Nov-2016.

“CTSYSTEM , Mezcladores Ultrasónicos para la Producción de Biodiésel.” Nov-2016.

“Beijing Ultrasonic , Mezcladores Ultrasónicos para la Producción de Biodiésel.” Nov-2016.

“Clangsonic, Mezcladores Ultrasónicos para la Producción de Biodiésel.” Nov-2016.

“Hainertec (Suzhou) Co. Ltd , Mezcladores Ultrasónicos para la Producción de Biodiésel.” Nov-2016.

V. B. Veljković, J. M. Avramović, and O. S. Stamenković, “Biodiesel production by ultrasound-assisted transesterification: State of the art and the perspectives,” Renew. Sustain. Energy Rev., vol. 16, no. 2, pp. 1193–1209, 2012.

T. S. Awad, H. A. Moharram, O. E. Shaltout, D. Asker, and M. M. Youssef, “Applications of ultrasound in analysis, processing and quality control of food: A review,” Food Res. Int., vol. 48, no. 2, pp. 410–427, 2012.

M. K. Lam, K. T. Lee, and A. R. Mohamed, “Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review,” Biotechnol. Adv., vol. 28, no. 4, pp. 500–518, 2010.

S. GU, X. LI, Y. YANG, and S. ZHANG, “Preparation of solid base KNO_3/Al_2O_3 and effects of catalyst preparation conditions on catalytic synthesis of pseudoionone,” J. Cent. South Univ. For. Technol., vol. 5, p. 25, 2015.

“Hainertec, Ultrasonic Power transducer.” Nov-2016.

P. R. Gogate, R. K. Tayal, and A. B. Pandit, “Cavitation: a technology on the horizon,” Curr. Sci., vol. 91, no. 1, pp. 35–46, 2006.

L. Naderloo, H. Javadikia, and M. Mostafaei, “Modeling the energy ratio and productivity of biodiesel with different reactor dimensions and ultrasonic power using ANFIS,” Renew. Sustain. Energy Rev., vol. 70, pp. 56–64, 2017.

“Acero inoxidable, AISI 304.” Nov-2016.

P. Visconti, G. Giannotta, R. Brama, P. Primiceri, R. De Fazio, A. Malvasi, and others, “Operation principle, advanced procedures and validation of a new Flex-SPI communication Protocol for smart IoT devices,” Int. J. Smart Sens. Intell. Syst. ISSN, pp. 1178–5608, 2017.

B. Chen, N. Pattanaik, A. Goulart, K. L. Butler-Purry, and D. Kundur, “Implementing attacks for modbus/TCP protocol in a real-time cyber physical system test bed,” in Communications Quality and Reliability (CQR), 2015 IEEE International Workshop Technical Committee on, 2015, pp. 1–6.

M. K. Adeyeri, K. Mpofu, and B. Kareem, “Development of hardware system using temperature and vibration maintenance models integration concepts for conventional machines monitoring: a case study,” J. Ind. Eng. Int., vol. 12, no. 1, pp. 93–109, 2016.

M. Asif, A. Raza, A. Sultan, and F. Malik, “Design of Mini PLC based on PIC18F452 Microcontroller using Concepts of Graceful Degradation,” Univ. Eng. Technol. Taxila. Tech. J., vol. 21, no. 1, p. 51, 2016.

J. K. Poppe, C. R. Matte, M. do C. R. Peralba, R. Fernandez-Lafuente, R. C. Rodrigues, and M. A. Z. Ayub, “Optimization of ethyl ester production from olive and palm oils using mixtures of immobilized lipases,” Appl. Catal. A Gen., vol. 490, pp. 50–56, 2015.

Cómo citar

IEEE

[1]
J. F. Florez Marulanda y D. R. Ortega Alegria, «Design and manufacturing of an ultrasonic reactor for biodiesel obtaining by transesterification», DYNA, vol. 86, n.º 211, pp. 75–83, oct. 2019.

ACM

[1]
Florez Marulanda, J.F. y Ortega Alegria, D.R. 2019. Design and manufacturing of an ultrasonic reactor for biodiesel obtaining by transesterification. DYNA. 86, 211 (oct. 2019), 75–83. DOI:https://doi.org/10.15446/dyna.v86n211.78518.

ACS

(1)
Florez Marulanda, J. F.; Ortega Alegria, D. R. Design and manufacturing of an ultrasonic reactor for biodiesel obtaining by transesterification. DYNA 2019, 86, 75-83.

APA

Florez Marulanda, J. F., & Ortega Alegria, D. R. (2019). Design and manufacturing of an ultrasonic reactor for biodiesel obtaining by transesterification. DYNA, 86(211), 75–83. https://doi.org/10.15446/dyna.v86n211.78518

ABNT

FLOREZ MARULANDA, J. F.; ORTEGA ALEGRIA, D. R. Design and manufacturing of an ultrasonic reactor for biodiesel obtaining by transesterification. DYNA, [S. l.], v. 86, n. 211, p. 75–83, 2019. DOI: 10.15446/dyna.v86n211.78518. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/78518. Acesso em: 18 ago. 2022.

Chicago

Florez Marulanda, Juan Fernando, y Daniel Rodrigo Ortega Alegria. 2019. «Design and manufacturing of an ultrasonic reactor for biodiesel obtaining by transesterification». DYNA 86 (211):75-83. https://doi.org/10.15446/dyna.v86n211.78518.

Harvard

Florez Marulanda, J. F. y Ortega Alegria, D. R. (2019) «Design and manufacturing of an ultrasonic reactor for biodiesel obtaining by transesterification», DYNA, 86(211), pp. 75–83. doi: 10.15446/dyna.v86n211.78518.

MLA

Florez Marulanda, J. F., y D. R. Ortega Alegria. «Design and manufacturing of an ultrasonic reactor for biodiesel obtaining by transesterification». DYNA, vol. 86, n.º 211, octubre de 2019, pp. 75-83, doi:10.15446/dyna.v86n211.78518.

Turabian

Florez Marulanda, Juan Fernando, y Daniel Rodrigo Ortega Alegria. «Design and manufacturing of an ultrasonic reactor for biodiesel obtaining by transesterification». DYNA 86, no. 211 (octubre 1, 2019): 75–83. Accedido agosto 18, 2022. https://revistas.unal.edu.co/index.php/dyna/article/view/78518.

Vancouver

1.
Florez Marulanda JF, Ortega Alegria DR. Design and manufacturing of an ultrasonic reactor for biodiesel obtaining by transesterification. DYNA [Internet]. 1 de octubre de 2019 [citado 18 de agosto de 2022];86(211):75-83. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/78518

Descargar cita

Dimensions

PlumX

Descargas

Los datos de descargas todavía no están disponibles.

Visitas a la página del resumen del artículo

282