Publicado

2020-11-05

A quantitative assessment of the environmental sustainability of UCG and CO2 storage

Evaluación cuantitativa de la sostenibilidad ambiental de UCG y almacenamiento de CO2

DOI:

https://doi.org/10.15446/dyna.v87n215.83649

Palabras clave:

Underground coal gasification, environmental sustainability index, sustainability condition. (en)
Gasificación subterránea de carbón índice de sostenibilidad ambiental condición de sostenibilidad (es)

Descargas

Autores/as

In this study, an innovative numerical model was developed to quantify the environmental sustainability situation of in situ underground coal gasification (UCG) and the CO2 storage process, which is expressed in terms of the environmental sustainability index (ESI). This approach is based on four environmental indicators: rock and soil, groundwater, surface water, and atmosphere. Based on the ESI values, the methodology proposed herein is used to classify the environmental sustainability state of the UCG process and its corresponding threshold limit value. Finally, the developed mathematical model was applied to possible European coal deposits, specifically in a Bulgarian coal basin. Research efforts have focused on the development of a mathematical model for environmental impact assessments to pave the way for full-scale trial and commercial applications.

En este estudio, se desarrolla un modelo numérico innovador para cuantificar la situación de sostenibilidad ambiental de la gasificación subterránea de carbón in situ (UCG) y el proceso de almacenamiento de CO2 que se expresa en términos del Índice de Sostenibilidad Ambiental (ESI). Este enfoque se basa en cuatro indicadores ambientales, a saber: roca y suelo, agua subterránea, agua superficial y atmósfera. Basado en los valores de ESI, aquí se propone una metodología para clasificar el estado de sostenibilidad ambiental del proceso UCG, así como su valor límite admisible correspondiente. Finalmente, el modelo matemático se ha desarrollado y aplicado a posibles depósitos de carbón europeos, específicamente en una cuenca de carbón de Bulgaria. Los esfuerzos de investigación se han centrado en el desarrollo de un modelo matemático de evaluación de impactos ambientales con el fin de buscar el camino para una prueba a gran escala y aplicaciones comerciales.

Referencias

NAKATEN, N., SCHLÜTER, R., AZZAM, R. AND KEMPKA, T. Development of a techno-economic model for dynamic calculation of COE, energy demand and CO2 emissions of an integrated UCG-CCS process. Applied Energy (submitted), 2013.

Da Gama, C.D., Navarro-Torres, V.F. and Falcão, P., Technological innovations on underground coal gasification and CO2 sequestration. DYNA, [online]. 77(161), pp. 101-108, 2010. Available at: https://revistas.unal.edu.co/index.php/dyna/article/view/13954

Burton, E., Firedmann, J. and Upadhye, H., Best practices in underground coal gasification. Livermore National Laboratory. Livermore, CA, USA, 2004. 119 P. DOI: 10.2172/1580018

Ren, T.X., Whittles, D. and Reddish, D.J., Coupled geotechnical and thermal modelling for the prediction of UCG cavity growth. International Workshop on UCG, October 1-2, London, UK, 2003.

Hoek, E., Rock engineering. Course note by Evert Hoek Consulting Engineer Inc. Vancouver, Canada, [online]. 2000, 324 P. [consulted: february 10th of 2020]. Available at: http://www.rockscience.com/education/hoeks_corner

Navarro-Torres, V.F., Da Gama C.D., Costa e Silva, M., Falcão Neves, P. and Qiang, X., Comparative stability analyses of traditional and selective room-and-pillar. International Journal of Minerals, Metallurgy and Materials, [online]. 18, pp. 1-8, 2011. Available at: https://link.springer.com/article/10.1007%2Fs12613-011-0392-2

Creedy, D.P., Garner, K., Holloway, S., Jones, N. and Ren, T.X., Review of underground coal gasification technological advancements. Report No. Coal r211 DTI/Pub URN 01/1041, UK, 2001, 64 P.

Shu-Qin, L. and Jun-Hua Y., Environmental benefits of underground coal gasification. Journal of Environmental Sciences, 12(2), pp.284-288, 2002.

Skousen, J.G., Sexstone, A. and Ziemkiewicz, P.F., Acid mine drainage control and treatment. Chapter 6, in: Barnhisel, R.I., Darmody, R.G. and Daniels, W.L., Eds., Reclamation of drastically disturbed lands, Vol. 41. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, USA, 2000. DOI: 10.2134/agronmonogr41.c6

Liu, S., Wanga, Y., Yua, Y.L. and Oakey, J., Volatilization of mercury, arsenic and selenium during underground coal gasification. Fuel, 85(10-11), pp. 1550-1558, 2006. DOI: 10.1016/j.fuel.2005.12.010

Stratus Consulting Inc., Potential environmental impacts of the proposed CIRI underground coal gasification project, Western Cook Inlet, Alaska,Washington, US, 2010, 39 P.

Green, M.B., Underground coal gasification – A joint European field trial in Spain. ETSU Report No. COAL R169. DTI/Pub URN99/1093, 1993.

Burland, J.B., Assessment of risk of damage to buildings due to tunneling and excavation. Invited Special Lecture. In: 1st Int. Conf. on Earthquake Geotech. Engineering IS Tokyo '95, 1995. ISBN: 905410578X

Navarro-Torres, V.F., Da Gama, C.D. and Verissimo, A.C., WP 6: environmental assessment of UCG and CO2 storage. Draft final report UCG&CO2 storage, Seventh Framework Program (FP7), European Coal & Steel Research Program. Period of Reference: 01.07.2010 – 31.12.2012. 2012.

Navarro-Torres, V.F. and Da Gama, C.D., A sustainability index to standardize the minimum permissible level of sustainable development in the mining industry. In: 3rd International Conference on Sustainable Development Indicators in the Minerals Industry SDIMI 2007, Milos Island, Greece, 17-20 June, 2007.

Cómo citar

IEEE

[1]
V. F. Navarro Torres, «A quantitative assessment of the environmental sustainability of UCG and CO2 storage», DYNA, vol. 87, n.º 215, pp. 34–38, nov. 2020.

ACM

[1]
Navarro Torres, V.F. 2020. A quantitative assessment of the environmental sustainability of UCG and CO2 storage. DYNA. 87, 215 (nov. 2020), 34–38. DOI:https://doi.org/10.15446/dyna.v87n215.83649.

ACS

(1)
Navarro Torres, V. F. A quantitative assessment of the environmental sustainability of UCG and CO2 storage. DYNA 2020, 87, 34-38.

APA

Navarro Torres, V. F. (2020). A quantitative assessment of the environmental sustainability of UCG and CO2 storage. DYNA, 87(215), 34–38. https://doi.org/10.15446/dyna.v87n215.83649

ABNT

NAVARRO TORRES, V. F. A quantitative assessment of the environmental sustainability of UCG and CO2 storage. DYNA, [S. l.], v. 87, n. 215, p. 34–38, 2020. DOI: 10.15446/dyna.v87n215.83649. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/83649. Acesso em: 8 ago. 2022.

Chicago

Navarro Torres, Vidal Félix. 2020. «A quantitative assessment of the environmental sustainability of UCG and CO2 storage». DYNA 87 (215):34-38. https://doi.org/10.15446/dyna.v87n215.83649.

Harvard

Navarro Torres, V. F. (2020) «A quantitative assessment of the environmental sustainability of UCG and CO2 storage», DYNA, 87(215), pp. 34–38. doi: 10.15446/dyna.v87n215.83649.

MLA

Navarro Torres, V. F. «A quantitative assessment of the environmental sustainability of UCG and CO2 storage». DYNA, vol. 87, n.º 215, noviembre de 2020, pp. 34-38, doi:10.15446/dyna.v87n215.83649.

Turabian

Navarro Torres, Vidal Félix. «A quantitative assessment of the environmental sustainability of UCG and CO2 storage». DYNA 87, no. 215 (noviembre 5, 2020): 34–38. Accedido agosto 8, 2022. https://revistas.unal.edu.co/index.php/dyna/article/view/83649.

Vancouver

1.
Navarro Torres VF. A quantitative assessment of the environmental sustainability of UCG and CO2 storage. DYNA [Internet]. 5 de noviembre de 2020 [citado 8 de agosto de 2022];87(215):34-8. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/83649

Descargar cita

Dimensions

PlumX

Descargas

Los datos de descargas todavía no están disponibles.

Visitas a la página del resumen del artículo

307