Publicado

2020-07-01

Optimization of the replacement time for critical repairable components

Optimización del tiempo de reemplazo de componentes críticos reparables

DOI:

https://doi.org/10.15446/dyna.v87n214.84509

Palabras clave:

Repairable components, Overall cost, Jack-Knife, MTBF, MTBI, Weibull (en)
Componentes reparables, Costo Global, Jack Knife, MTBF, MTBI, Weibull (es)

Descargas

Autores/as

Equipment-intensive industries must manage critical components due to their impact on the availability and high inventory carrying costs. In this context, this study seeks to assess mean times between interventions (MTBI) and mean times between failures (MTBF) to determine optimal replacement times for critical repairable components used in six EX5500 hydraulic excavators operating at an open-pit mining site. For these purposes, the authors compared a base policy using the MTBF values provided by the equipment manufacturer, against the proposed policy using the MTBI values obtained from equipment intervention records. The results from the study, revealed that the MTBI policy was able to streamline the replacement times for critical repairable components, thus, generating a cost optimization model at a higher level of reliability

La gestión de componentes críticos en industrias con uso intensivo de equipos, es importante por el impacto en la disponibilidad y por los elevados costos de capital en inventario. En tal sentido se propuso evaluar el tiempo medio entre intervenciones (MTBI) y tiempo medio entre fallas (MTBF) en la determinación del tiempo óptimo de reemplazo de componentes críticos reparables de seis palas hidráulicas EX5500, que operan en un emplazamiento minero a tajo abierto. Se comparó una política base que usa el MTBF proporcionado por el fabricante de los equipos, y la política propuesta que usa el MTBI obtenido del historial de intervenciones de la flota. El estudio evidenció que la política que usa el MTBI optimiza el tiempo de reemplazo de componentes críticos reparables, logrando un modelo de optimización de costos a un mejor nivel de confiabilidad.

Referencias

Hu, Q., Boylan, J. E., Chen, H., & Labib, A. OR in spare parts management: A review, European Journal of Operational Research, 266 (2), pp. 395–414, 2018. https://doi.org/10.1016/j.ejor.2017.07.058

Seecharan, T., Labib, A., & Jardine, A. Maintenance strategies: Decision Making Grid vs Jack-Knife Diagram, Journal of Quality in Maintenance Engineering, 24 (1), pp. 61–78, 2018. https://doi.org/10.1108/JQME-06-2016-0023

Trusevych, S. A., Kwon, R. H., & Jardine, A. K. S. Optimizing Critical Spare Parts and Location Based on the Conditional Value-At-Risk Criterion, The Engineering Economist, 59 (2), pp. 116–135, 2014. DOI: 10.1080/0013791X.2013.876795

Bounou, O., El Barkany, A. & El Biyaali, A. Inventory Models for Spare Parts Management: A Review, International Journal of Engineering Research in Africa, 28, pp. 182–198, 2017. DOI: 10.4028/www.scientific.net/JERA.28.182

Pascual, R., Del Castillo, G., Louit, D. & Knights, P. Business-oriented prioritization: A novel graphical technique, Reliability Engineering System Safety, 94(8), pp. 1308–1313, 2009. DOI: 10.1016/j.ress.2009.01.013 https://doi.org/10.1016/j.ress.2009.01.013

Ramos, D. R. G. Integrated Models for Critical Spare Parts Management in Asset Intensive Industries, Dr. Thesis, School of Engineering, The Pontifical Catholic University of Chile, Santiago de Chile, Chile, 2014.

Louit, D., Pascual, R., Banjevic, D. & Jardine, A. K. S. Condition-based spares ordering for critical components, Mechanical Systems and Signal Processing, 25(5), pp. 1837–1848, 2011. https://doi.org/10.1016/j.ymssp.2011.01.004

Behfard, S., Van der Heijden, M. C., Al Hanbali, A. & Zijm, W. H. M. Last time buy and repair decisions for spare parts, European Journal of Operational Research, 244(2), pp. 498–510, 2015. https://doi.org/10.1016/j.ejor.2015.02.003

Jardine A. K. S. & Tsang A. H. C. Maintenance, Replacement, and Reliability. Theory and Applications, Second Edition. Boca Raton London New York: CRC Press. Taylor & Francis Group, 2013.

Knights, P. F. Downtime Priorities, Jack-knife Diagrams, and the Business Cycle, MJ Maintenance Journal [Online]. vol. 17, no. 2, 2004. [date of reference July 25th of 2019]. Available at: https://www.researchgate.net/publication/43518210_Downtime_priorities_Jack-knife_diagrams_and_the_business_cycle

Rivera, J. Modelo de toma de decisiones de mantenimiento para evaluar Impactos en disponibilidad, mantenibilidad, confiabilidad y costos, MSc. Thesis, Department of Industrial Engineering, University of Chile, Santiago de Chile, 2015.

Pascual, R. El arte de mantener. Santiago de Chile, Chile, 2009.

Pascual, R. Selección de sistemas críticos un enfoque desde la gestión de activos físicos, Viña del Mar, Chile, 2007.

Louit, D., Pascual, R., Banjevic, D. & Jardine, A. K. S. Optimization models for critical spare parts inventories—a reliability approach, Journal of the Operational Research Society, 62 (6), pp. 992–1004, 2011. DOI: 10.1057/jors.2010.49

Shah, J. A., Saleh, J. H. & Hoffman, J. A. Analytical basis for evaluating the effect of unplanned interventions on the effectiveness of a human–robot system, Reliability Engineering & System Safety, 93(8), pp. 1280–1286, 2008. https://doi.org/10.1016/j.ress.2007.06.007

Aulia, V., Alhilman, J. & Nurdinintya Athari, S. Proposed maintenance policy and spare part management of Goss Universal Printing machine with reliability centered maintenance, reliability centered spares, and probabilistic inventory model, in Proceeding of 9th International Seminar on Industrial Engineering and Management, 2016, pp. 81–86.

Jardine, A. K. S., Lin, D. & Banjevic, D. A review on machinery diagnostics and prognostics implementing condition-based maintenance, Mechanical Systems and Signal Processing, 20(7), pp. 1483–1510, 2006. https://doi.org/10.1016/j.ymssp.2005.09.012

Örkcü, H. H., Özsoy, V. S., Aksoy, E. & Dogan, M. I. Estimating the parameters of 3-p Weibull distribution using particle swarm optimization: A comprehensive experimental comparison, Applied Mathematics and Computation, 268, pp. 201–226, 2015. https://doi.org/10.1016/j.amc.2015.06.043

Salazar, R., Rojano, A., Figueroa, E. & Perez, F. Aplicaciones de la distribución weibull en ingeniería de confiabilidad, in Memoria del XXI Coloquio Mexicano de Economía Matemática y Econometría, Tepic, Nayarit. México, 2012.

Sobral, J. & Guedes Soares, C. Preventive Maintenance of Critical Assets based on Degradation Mechanisms and Failure Forecast, IFAC-Pap., 49(28), pp. 97–102, 2016.

Makis, V. & Jardine, A. K. S., A note on optimal replacement policy under general repair, European Journal of Operational Research, 69(1), pp. 75–82, 1993. https://doi.org/10.1016/0377-2217(93)90092-2

Oblitas, J., Vílchez, M. & Castro, W. El nivel de servicio de componentes críticos reparables de palas hidráulicas, DYNA Ingeniería Industrial, vol. DYNA-acelerado (0), 2019. http://dx.doi.org/10.6036/9296

Lin, X., Basten, R. J. I., Kranenburg, A. A. & Van Houtum, G. J. Condition based spare parts supply, Reliability Engineering & System Safety, 168, pp. 240–248, 2017. https://doi.org/10.1016/j.ress.2017.05.035

Alem Tabriz, A., Khorshidvand, B. & Ayough, A. Modelling age based replacement decisions considering shocks and failure rate, International Journal of Quality & Reliability Management, 33(1), pp. 107–119, 2016. https://doi.org/10.1108/IJQRM-11-2014-0168

Wang, Z., Hu, C., Wang, W., Kong, X. & Zhang, W. A prognostics-based spare part ordering and system replacement policy for a deteriorating system subjected to a random lead time, International Journal of Production Research, 53(15), pp. 4511–4527, 2015. https://doi.org/10.1080/00207543.2014.988892

Cómo citar

IEEE

[1]
M. K. Vílchez Torres, J. F. Oblitas Cruz, y W. Castro Silupu, «Optimization of the replacement time for critical repairable components», DYNA, vol. 87, n.º 214, pp. 93–99, jul. 2020.

ACM

[1]
Vílchez Torres, M.K., Oblitas Cruz, J.F. y Castro Silupu, W. 2020. Optimization of the replacement time for critical repairable components. DYNA. 87, 214 (jul. 2020), 93–99. DOI:https://doi.org/10.15446/dyna.v87n214.84509.

ACS

(1)
Vílchez Torres, M. K.; Oblitas Cruz, J. F.; Castro Silupu, W. Optimization of the replacement time for critical repairable components. DYNA 2020, 87, 93-99.

APA

Vílchez Torres, M. K., Oblitas Cruz, J. F., & Castro Silupu, W. (2020). Optimization of the replacement time for critical repairable components. DYNA, 87(214), 93–99. https://doi.org/10.15446/dyna.v87n214.84509

ABNT

VÍLCHEZ TORRES, M. K.; OBLITAS CRUZ, J. F.; CASTRO SILUPU, W. Optimization of the replacement time for critical repairable components. DYNA, [S. l.], v. 87, n. 214, p. 93–99, 2020. DOI: 10.15446/dyna.v87n214.84509. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/84509. Acesso em: 21 may. 2022.

Chicago

Vílchez Torres, Mylena Karen, Jimy Frank Oblitas Cruz, y Wilson Castro Silupu. 2020. «Optimization of the replacement time for critical repairable components». DYNA 87 (214):93-99. https://doi.org/10.15446/dyna.v87n214.84509.

Harvard

Vílchez Torres, M. K., Oblitas Cruz, J. F. y Castro Silupu, W. (2020) «Optimization of the replacement time for critical repairable components», DYNA, 87(214), pp. 93–99. doi: 10.15446/dyna.v87n214.84509.

MLA

Vílchez Torres, M. K., J. F. Oblitas Cruz, y W. Castro Silupu. «Optimization of the replacement time for critical repairable components». DYNA, vol. 87, n.º 214, julio de 2020, pp. 93-99, doi:10.15446/dyna.v87n214.84509.

Turabian

Vílchez Torres, Mylena Karen, Jimy Frank Oblitas Cruz, y Wilson Castro Silupu. «Optimization of the replacement time for critical repairable components». DYNA 87, no. 214 (julio 1, 2020): 93–99. Accedido mayo 21, 2022. https://revistas.unal.edu.co/index.php/dyna/article/view/84509.

Vancouver

1.
Vílchez Torres MK, Oblitas Cruz JF, Castro Silupu W. Optimization of the replacement time for critical repairable components. DYNA [Internet]. 1 de julio de 2020 [citado 21 de mayo de 2022];87(214):93-9. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/84509

Descargar cita

CrossRef Cited-by

CrossRef citations1

1. Mylena Vílchez-Torres, Carlos Gastón Guevara Alejabo, Carlos Alberto Silvera Peña, Roxana Elizabeth Mestanza Cacho. (2021). Proceedings of the 6th Brazilian Technology Symposium (BTSym’20). Smart Innovation, Systems and Technologies. 233, p.156. https://doi.org/10.1007/978-3-030-75680-2_19.


Dimensions

PlumX

Descargas

Los datos de descargas todavía no están disponibles.

Visitas a la página del resumen del artículo

321