Publicado

2021-05-10

Capacitors placement in distribution systems with nonlinear load by using the variables’ inclusion and interchange algorithm

Ubicación de capacitores en sistemas de distribución con carga no lineal mediante el algoritmo de inclusión e intercambio de variables

DOI:

https://doi.org/10.15446/dyna.v88n217.91145

Palabras clave:

capacitors; harmonics; distribution systems; optimization algorithms (en)
capacitores; armónicos; sistemas de distribución; algoritmos de optimización. (es)

Descargas

Autores/as

This work presents a substantial improvement of the variables’ inclusion and interchange algorithm (VIIA) for capacitors placement that considers circuits with harmonic distortion. Several load states are considered, and fixed and switched capacitors are employed in optimization. All the pertinent constraints of voltage magnitude, total harmonic distortion, individual harmonic distortion, and of overstress of capacitors are implemented. The here defined global harmonic-distortion index states the distance to the feasibility or the unfeasibility of a solution with respect the harmonic distortion constraints. The inclusion in the sequential quadratic programming sub-problem of an inequality linear constraint on this global harmonic-distortion index, allows the determining of solutions that comply with the harmonic distortion related constraints. A comparison of the solutions of various examples obtained by the presented method with the best solutions obtained by the Matlab’s genetic algorithm shows the effectiveness of this method.

Este trabajo presenta una mejora sustancial del algoritmo de inclusión e intercambio de variables (VIIA) para ubicación de capacitores. Son considerados varios estados de carga y se emplean capacitores fijos y controlados en la optimización. Todas las restricciones pertinentes de distorsión total de armónicos, distorsión individual de armónicos y de sobrecarga de capacitores son implementadas. El índice de distorsión armónica global que aquí se define, establece la distancia a la factibilidad o no factibilidad de una solución con respecto a las restricciones de distorsión armónica. La inclusión en el sub-problema de programación cuadrática secuencial, de una restricción lineal de desigualdad sobre este índice global de distorsión armónica, permite determinar soluciones que cumplen con las restricciones relacionadas a la distorsión armónica. Una comparación de las soluciones obtenidas para varios ejemplos por el método presentado con las mejores soluciones obtenidas por el algoritmo genético de Matlab, muestra la efectividad de este método.

Referencias

Masoum, M.A., Lajevardi, M., Fuchs, E.F. and Grady, W.M.,Application of local variations and maximum sensitivities selectionsfor optimal placement of shunt capacitor banks under nonsinusoidaloperating conditions. Int. J. Electr. Power Energy Syst., 26, pp. 761-769, 2004. DOI: 10.1016/j.ijepes.2004.05.008

Masoum, M.A., Jafarian, A., Lajevardi, M., Fuchs, E.F. and Grady,W.M., Fuzzy approach for optimal placement and sizing of capacitorbanks in the presence of harmonics. IEEE Trans. Power Deliv., 19,pp. 822-831, 2004. DOI: 10.1109/TPWRD.2003.823187

Masoum, M.A., Lajevardi, M., Jafarian, M. and Fuchs, E.F., Optimalplacement, replacement and sizing of capacitor banks in distorteddistribution networks by genetic algorithms. IEEE Trans. PowerDeliv., 19(4), pp. 1794-1801, 2004. DOI:10.1109/TPWRD.2004.835438

Yu, X., Xiong, X., and Wu, Y., A PSO-based approach to optimalcapacitor placement with harmonic distortion consideration. ElectricPower Systems Research, 71(1), pp. 27-33, 2004. DOI:10.1016/j.epsr.2004.01.002

Carpinelli, P., Varilone, V., Di Vito, and Abur. A., Capacitorplacement in three-phase distribution systems with nonlinear andunbalanced loads, IEEE Proc. Gener. Transm. Distrib, 152(1), pp. 47-52, 2005. DOI: 10.1049/ipgtd:20040709

Khalil, T.M., Youssef, H.K. and Aziz, M.A., Optimal Capacitorplacement on radial distribution feeders in presence of nonlinear loads using binary particle swarm optimization. In: Proceedings of the 19th International Conference on Electricity Distribution, Vienna, Austria,2007.

Ladjavardi, M. and Masoum, M.A., Genetically optimized fuzzyplacement and sizing of capacitor banks in distorted distributionnetworks. IEEE Trans. Power Deliv., 23, pp. 449-456, 2008. DOI:10.1109/TPWRD.2007.911185

Eajal, A.A. and El-Hawary, M.E., Optimal capacitor placement andsizing in unbalanced distribution systems with harmonicsconsideration using particle swarm optimization. IEEE Trans. PowerDeliv., 25, pp. 1734-1744, 2010. DOI:10.1109/TPWRD.2009.2035425

Taher, S.A., Karimian, A. and Hasani, M., A new method for optimal location and sizing of capacitors in distorted distribution networksusing PSO algorithm. Simul. Model. Pract. Theory, 19, pp. 662-672, 2011. DOI: 10.1016/j.simpat.2010.09.001

Mohkami, H., Hooshmand, R. and Khodabakhshian, A., Fuzzyoptimal placement of capacitors in the presence of nonlinear loads inunbalanced distribution networks using BF-PSO algorithm, Appl.Soft Comput., 11(4), pp. 3634-3642, 2011. DOI:10.1016/j.asoc.2011.01.035

Chang, G.W., Chang, W.C., Chuang, C.S. and Shih, D.Y., FuzzyLogic and immune-based algorithm for placement and sizing of shunt capacitor banks in a distorted power Network. IEEE Trans. PowerDeliv., 26, pp. 2145-2153, 2011. DOI:10.1109/TPWRD.2011.2167246

Segura, S., da Silva, L.C., Romero, R., et al., Strategic capacitorplacement in distribution systems by minimization of harmonicsamplification because of resonance, IET Gener. Transm. Distrib.,6(7), pp. 646-656, 2012. DOI: 10.1049/ietgtd.2011.0517

IEEE Std. 519-2014. IEEE recommended practices and requirementsfor harmonic control in electrical power systems. IEEE, 2014.

Gonzalves, A.R., Cavellucci, C., Filho, C.L. and Von Zuben, F.J., An Extremal optimization approach to parallel resonance constrainedcapacitor placement problem, In: 2012 6th IEEE/PES Transmissionand Distribution: Latin America, Montevideo, Uruguay, 2012.

Taher, S.A. and Bagherpour, R., A new approach for optimalcapacitor placement and sizing in unbalanced distorted distributionsystems using hybrid honey bee colony algorithm, Int. J. Electr.Power Energy Syst., 49, pp. 430-448, 2013. DOI:10.1016/j.ijepes.2013.02.003

Vuletic J. and Todorovski, M., Optimal capacitor placement indistorted distribution networks with different load models usingPenalty Free Genetic Algorithm, Electrical Power and EnergySystems, 78, pp. 174-182, 2016. DOI: 10.1016/j.ijepes.2015.11.065

Azevedo, M.S.S., Abril, I.P., Leite, J.C. and de Medeiros, A.B.,Capacitors placement by NSGA-II in distribution systems with non-linear loads. Int. J. Electr. Power Energy Syst., 82, pp. 281-287, 2016. DOI: 10.1016/j.ijepes.2016.03.025

Onaka, J.H.D, Bezerra, U.H., de Lima Tostes, M. and Lima, A.S., Aposteriori decision analysis based on Resonance Index and NSGA-IIapplied to the capacitor banks placement problem, Electric PowerSystems Research, 151, pp. 296-307, 2017. DOI:10.1016/j.epsr.2017.05.041

Ayoubi, M., Hooshmand, R.A. and Esfahani, M.T., Optimal capacitor placement in distorted distribution systems considering resonanceconstraint using multi-swarm particle swarm optimisation algorithm.IET Gener. Trans. Distrib., 11, pp. 3210-3221, 2017. DOI:10.1049/iet-gtd.2016.0989

Semensato, M., Application of the Ideal compensation method inunbalanced distribution network considering harmonics. In: 2019IEEE PES Innovative Smart Grid Technologies Conference-LatinAmerica, ISGT Latin America, IEEE, 2019, pp. 1-6.

Moghadam, M.E., Falaghi, H. and Farhadi, M., A Novel method ofoptimal capacitor placement in the presence of harmonics for powerdistribution Network using NSGA-II Multi-objective geneticoptimization algorithm, Math. Comput. Appl., 25(17), pp. 1-18, 2020.DOI: 10.3390/mca25010017

IEEE Std. 18-2002. IEEE standard for shunt power capacitors. IEEE,2003.

Pérez-Abril, I., Algorithm of inclusion and interchange of variablesfor capacitors placement. Electric Power Systems Research, 148, pp.117-126, 2017. DOI: 10.1016/j.epsr.2017.03.027

Prakash, D.B. and Lakshminarayana, C., Optimal siting of capacitorsin radial distribution network using Whale Optimization Algorithm.Alexandria Engineering Journal, 56, pp. 499-509, 2017. DOI:10.1016/j.aej.2016.10.002

Díaz, P., Pérez-Cisneros, M., Cuevas, M., Camarena, O., Martínez,F.A.F. and González. A., A swarm approach for improving voltageprofiles and reduce power loss on electrical distribution Networks.IEEE Access, 6, pp. 49498-49512, 2018. DOI:0.1109/ACCESS.2018.2868814

Arrillaga, J. and Watson, N.R., Power System Harmonics, John Wiley& Sons, 2003.

Cómo citar

IEEE

[1]
I. Perez Abril, «Ubicación de capacitores en sistemas de distribución con carga no lineal mediante el algoritmo de inclusión e intercambio de variables», DYNA, vol. 88, n.º 217, pp. 13–22, may 2021.

ACM

[1]
Perez Abril, I. 2021. Ubicación de capacitores en sistemas de distribución con carga no lineal mediante el algoritmo de inclusión e intercambio de variables. DYNA. 88, 217 (may 2021), 13–22. DOI:https://doi.org/10.15446/dyna.v88n217.91145.

ACS

(1)
Perez Abril, I. Ubicación De Capacitores En Sistemas De distribución Con Carga No Lineal Mediante El Algoritmo De inclusión E Intercambio De Variables. DYNA 2021, 88, 13-22.

APA

Perez Abril, I. (2021). Ubicación de capacitores en sistemas de distribución con carga no lineal mediante el algoritmo de inclusión e intercambio de variables. DYNA, 88(217), 13–22. https://doi.org/10.15446/dyna.v88n217.91145

ABNT

PEREZ ABRIL, I. Ubicación de capacitores en sistemas de distribución con carga no lineal mediante el algoritmo de inclusión e intercambio de variables. DYNA, [S. l.], v. 88, n. 217, p. 13–22, 2021. DOI: 10.15446/dyna.v88n217.91145. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/91145. Acesso em: 25 mar. 2023.

Chicago

Perez Abril, Ignacio. 2021. «Ubicación De Capacitores En Sistemas De distribución Con Carga No Lineal Mediante El Algoritmo De inclusión E Intercambio De Variables». DYNA 88 (217):13-22. https://doi.org/10.15446/dyna.v88n217.91145.

Harvard

Perez Abril, I. (2021) «Ubicación de capacitores en sistemas de distribución con carga no lineal mediante el algoritmo de inclusión e intercambio de variables», DYNA, 88(217), pp. 13–22. doi: 10.15446/dyna.v88n217.91145.

MLA

Perez Abril, I. «Ubicación De Capacitores En Sistemas De distribución Con Carga No Lineal Mediante El Algoritmo De inclusión E Intercambio De Variables». DYNA, vol. 88, n.º 217, mayo de 2021, pp. 13-22, doi:10.15446/dyna.v88n217.91145.

Turabian

Perez Abril, Ignacio. «Ubicación De Capacitores En Sistemas De distribución Con Carga No Lineal Mediante El Algoritmo De inclusión E Intercambio De Variables». DYNA 88, no. 217 (mayo 10, 2021): 13–22. Accedido marzo 25, 2023. https://revistas.unal.edu.co/index.php/dyna/article/view/91145.

Vancouver

1.
Perez Abril I. Ubicación de capacitores en sistemas de distribución con carga no lineal mediante el algoritmo de inclusión e intercambio de variables. DYNA [Internet]. 10 de mayo de 2021 [citado 25 de marzo de 2023];88(217):13-22. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/91145

Descargar cita

CrossRef Cited-by

CrossRef citations1

1. Oscar Danilo Montoya, Walter Gil-González, Alejandro Garcés. (2022). On the Conic Convex Approximation to Locate and Size Fixed-Step Capacitor Banks in Distribution Networks. Computation, 10(2), p.32. https://doi.org/10.3390/computation10020032.


Dimensions

PlumX

Visitas a la página del resumen del artículo

169

Descargas

Los datos de descargas todavía no están disponibles.