Influence of zinc coating on nugget development and mechanical properties in dissimilar welded joints DP600 – AISI304 obtained by the RSW process
Influencia del recubrimiento de zinc en la formación del punto y las propiedades mecánicas de la unión disímil DP600 – AISI304 obtenida mediante el proceso RSW
DOI:
https://doi.org/10.15446/dyna.v89n220.95334Palabras clave:
resistance spot welding, galvanized steel, dissimilar joints, mechanical properties, nugget development, dynamic resistance (en)soldadura por resistencia eléctrica por puntos, aceros galvanizados, soldaduras disímiles, propiedades mecánicas, desarrollo del punto, resistencia dinámica (es)
Descargas
This paper researches the influence of zinc coating of galvanized DP600 steel (DP600G) on the nugget development and mechanical properties of dissimilar DP600 - AISI304 welded joints obtained by resistance spot welding process (RSW). The RSW evaluations consisted of determining, from the dynamic resistance curves, the different stages involved in nugget formation. The experimental results showed that the zinc coating on the DP600G steel has a significant influence on the time needed for the start of the nugget formation, two times higher than that used for non-galvanized steel. The expulsion time was delayed by 1.12 times. The presence of Zn in the DP600G/AISI304 welded joints produced smaller nugget diameters compared to the DP600/AISI304 joints for the same experimental conditions, however higher peak failure load values were obtained for the first. The causes of this unusual behavior are also analyzed in this paper.
Este trabajo investiga la influencia del recubrimiento de zinc del acero DP600 (DP600G) en la formación del punto y las las propiedades mecánicas de las uniones disímiles DP600 - AISI304 obtenidas mediante el proceso de soldadura por resistencia eléctrica por puntos (RSW).
El análisis consistió en determinar, a partir de las curvas de resistencia dinámica, las diferentes etapas en la formación del punto. Los resultados experimentales mostraron que el recubrimiento de zinc del acero DP600G influye significativamente en el tiempo necesario para el inicio de la formación del punto, dos veces superior al del acero no galvanizado. El tiempo de la expulsión se retrasó 1,12 veces. La presencia de Zn en las uniones soldadas DP600G/AISI304 produjo diámetros del punto más pequeños en comparación con las uniones DP600/AISI304 para las mismas condiciones experimentales; sin embargo, se obtuvieron valores de carga máxima de fallo más altos para las primeras.
Referencias
Pouranvari, M., Marashi, S. and Mousavizadeh, S., Dissimilar resistance spot welding of DP600 dual phase and AISI 1008 low carbon steels:correlation between weld microstructure and mechanical properties, Ironmaking & Steelmaking, 38(6), pp. 471-480, 2011. https://doi.org/10.1179/1743281211Y.0000000024
Ma, C., Chen, D.L., Bhole, S.D., et al., Microstructure and fracture characteristics of spot-welded DP600 steel, Materials Science and Engineering: A, 485(1–2), pp. 334-346, 2008. http://dx.doi.org/10.1016/j.msea.2007.08.010
Luo, Y., Liu, J., Xu, H., et al., Regression modeling and process analysis of resistance spot welding on galvanized steel sheet, Materials & Design, 30(7), pp. 2547-2555, 2009. http://dx.doi.org/10.1016/j.matdes.2008.09.031
Raoelison, R., Fuentes, A., Rogeon, P., et al., Contact conditions on nugget development during resistance spot welding of Zn coated steel sheets using rounded tip electrodes, Journal of Materials Processing Technology, 212(8), pp. 1663-1669, 2012. http://dx.doi.org/10.1016/j.jmatprotec.2012.03.009
Chan, K., Scotchmer, N., Zhao, J., et al., Weldability improvement using coated electrodes for RSW of HDG steel. SAE Technical Paper; Report No.: 0148-7191, 2006.
Gedeon, S. and Eagar, T., Resistance spot welding of galvanized steel: Part II. Mechanisms of spot weld nugget formation, Metallurgical Transactions B, 17(4), pp. 887-901, 1986.
Ighodaro, O.L.R., Biro, E. and Zhou, Y.N., Study and applications of dynamic resistance profiles during resistance spot welding of coated hotstamping steels, Metallurgical and Materials Transactions A, 48(2), pp.745-758. 2017. http://dx.doi.org/10.1016/j.msea.2012.05.085
Khan, M., Bhole, S., Chen, D., et al., Welding behaviour, microstructure and mechanical properties of dissimilar resistance spot welds between galvannealed HSLA350 and DP600 steels, Science and Technology of Welding and Joining, 14(7), pp. 616-625, 2009. https://doi.org/10.1179/136217109X12464549883295
Wei, S.T., Lv, D., Liu, R.D., et al., Similar and dissimilar resistance spot welding of advanced high strength steels: welding and heat treatment procedures, structure and mechanical properties, Science and Technology of Welding and Joining, 19(5), pp. 427-435, 2014. https://doi.org/10.1179/1362171814Y.0000000211
Jaber, H.L., Pouranvari, M., Marashi, S.P.H., et al., Dissimilar spot welding of dual phase steel/ferritic stainless steel: phase transformations, Science and Technology of Welding and Joining, 19(7), pp. 565-571, 2014. https://doi.org/10.1179/1362171814y.0000000226
Lin, H., Hsu, C., Lee, C., et al., Effects of zinc layer thickness on resistance spot welding of galvanized mild steel, Journal of Materials Processing Technology, 251, pp. 205-213, 2018. https://doi.org/10.1016/j.jmatprotec.2017.08.035
Valaee-Tale, M., Sheikhi, M., Mazaheri, Y., et al., Criterion for predicting expulsion in resistance spot welding of steel sheets, Journal of Materials Processing Technology, 275, pp. 116329, 2020. https://doi.org/10.1016/j.jmatprotec.2019.116329
Espinel-Hernández, A., Sánchez-Roca, A., Carvajal-Fals, H., et al., Influence of polarity on mechanical properties of dissimilar resistance spot welds of DP 600/AISI 304 steels, Science and Technology of Welding and Joining. 21(8), pp. 607-613, 2016. http://dx.doi.org/10.1080/13621718.2016.1149913
Anijdan, S.M., Sabzi, M., Ghobeiti-Hasab, M., et al., Optimization of spot welding process parameters in dissimilar joint of dual phase steel DP600 and AISI 304 stainless steel to achieve the highest level of shear-tensile strength, Materials Science and Engineering: A, 726, pp. 120-125, 2018. http://dx.doi.org/10.1016/j.msea.2018.04.072
AWS, A. SAE D8. 9M: Recommended practices for test methods for evaluating the resistance spot welding behavior of automotive sheet steel materials, ISBN: 0-87171-672-0, 2002.
Zhao, D., Wang, Y., Zhang, P., et al., Modeling and experimental research on resistance spot welded joints for dual-phase steel, Materials,12(7), art. 1108, 2019. https://doi.org/10.3390/ma12071108
Chu, T. and Ho, C., Thermal conductivity and electrical resistivity of eight selected AISI stainless steels. Thermal Conductivity 15, pp. 79-104, 1978.
Tsai, C., Papritan, J., Dickinson, D., et al., Modeling of resistance spot weld nugget growth, Welding Journal (USA), 71(2), pp. 47-54, 1992.
Marashi, P., Pouranvari, M., Amirabdollahian, S., et al., Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels, Materials Science and Engineering: A,480(1), pp. 175-180, 2008.https://doi.org/10.1016/j.msea.2007.07.007
Wan, X., Wang, Y. and Zhang, P., Modelling the effect of welding current on resistance spot welding of DP600 steel, Journal of Materials Processing Technology, 214(11), pp. 2723-2729, 2014. https://doi.org/10.1016/j.jmatprotec.2014.06.009
Jagadeesha, T. and Jothi, T.S., Studies on the influence of process parameters on the AISI 316L resistance spot-welded specimens, The Int J Adv Manuf Technol., 93, pp. 73-88, 2017. https://doi.org/10.1007/s00170-015-7693-y
Safari, M., Mostaan, H., Kh, H.Y., et al., Effects of process parameters on tensile-shear strength and failure mode of resistance spot welds of AISI 201 stainless steel, Int J Adv Manuf Technol., 89, pp. 1853-1863, 2017. https://doi.org/10.1007/s00170-016-9222-z
Ghazanfari, H. and Naderi, M., Expulsion characterization in resistance spot welding by means of a hardness mapping technique, International Journal of Minerals, Metallurgy and Materials, 21(9), pp. 894-897, 2014. https://doi.org/10.1007/s12613-014-0986-6
Ma, C., Bhole, S., Chen, D., et al., Expulsion monitoring in spot welded advanced high strength automotive steels, Science and Technology of Welding and Joining, 11(4), pp. 480-487, 2006. https://doi.org/10.1179/174329306X120895
Saha, D.C., Ji, C.W. and Park, Y.D., Coating behaviour and nugget formation during resistance welding of hot forming steels, Science and Technology of Welding and Joining, 20(8), pp. 708-720, 2015. https://doi.org/10.1179/1362171815Y.0000000054
Alizadeh-Sh, M., Pouranvari, M. and Marashi, S.P.H., Welding metallurgy of stainless steels during resistance spot welding Part II –Heat affected zone and mechanical performance, Science and Technology of Welding and Joining, 20(6), pp. 512-521, 2015. http://dx.doi.org/10.1016/j.matdes.2013.11.022
Cómo citar
IEEE
ACM
ACS
APA
ABNT
Chicago
Harvard
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
El autor o autores de un artículo aceptado para publicación en cualquiera de las revistas editadas por la facultad de Minas cederán la totalidad de los derechos patrimoniales a la Universidad Nacional de Colombia de manera gratuita, dentro de los cuáles se incluyen: el derecho a editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir en artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista. Al asumir los derechos patrimoniales del artículo, no podrá reproducirse parcial o totalmente en ningún medio impreso o digital sin permiso expreso del mismo Carta de Presentación