Published
Logarithmic Type Direct and Synthetic Estimators for Domain Mean Using Simple Random Sampling
Estimadores directos y sintéticos de tipo logarítmico para la media del dominio mediante muestreo aleatorio simple
DOI:
https://doi.org/10.15446/rce.v47n1.109325Keywords:
Direct and synthetic estimators, Mean square error, Small area estimation, Simple random sampling (en)Estimación de área pequeña, Estimadores directos y sintéticos, Error cuadrático medio, Muestreo aleatorio simple (es)
Downloads
In this article, we propose logarithmic type direct and synthetic estimators for the estimation of domain mean under simple random sampling. The properties such as bias and mean square error of the proposed direct and synthetic estimators are obtained up to first order approximation. The efficiency conditions are obtained under which the proposed direct and synthetic estimators outperform their conventional counterparts. The performance of the proposed direct and synthetic estimators is examined with the help of comprehensive computational study using real and artificially drawn populations. Some appropriate suggestions are also provided to the surveyors.
En este artículo se proponen estimadores directos y sintéticos de tipo logarítmico para la estimación de la media del dominio bajo muestreo aleatorio simple. Las propiedades como sesgo y error cuadrático medio de los estimadores directos y sintéticos propuestos se obtienen hasta aproximación de primer orden. Se obtienen las condiciones de eficiencia bajo las cuales los estimadores directos y sintéticos propuestos superan a sus contrapartes convencionales. El desempeño de los estimadores directos y sintéticos propuestos se examina con la ayuda de un estudio computacional integral que utiliza poblaciones reales y extraídas artificialmente. Algunas sugerencias apropiadas también se proporcionan a los encuestadores.
References
Bahl, S. & Tuteja, R.K. (1991). Ratio and product type exponential estimators. Journal of Information and Optimization Sciences, 12(1), 159-164. DOI: https://doi.org/10.1080/02522667.1991.10699058
Gonzalez, M.E. (1973). Use and evaluation of synthetic estimates. Proceedings of the social statistics section, American Statistical Association, 33-36.
Khare, B.B., Ashutosh, & Khare, S. (2018). Comparative Study of Synthetic Estimators with Ratio Synthetic Estimator for Domain Mean in Survey Sampling Using Auxiliary Character. International Journal of Applied Mathematics & Statistics, 57(3), 152-161.
Pandey, K.K. & Tikkiwal, G.C. (2010). Generalized class of synthetic estimators for small area under systematic sampling design. Statistics in Transition-new series, Poland, 11(1), 75-89. DOI: https://doi.org/10.59170/stattrans-2010-005
Pandey, K.K. (2007). On Synthetic and Composite Estimators for Small Area Estimation under Lahiri-Midzuno Sampling Scheme. Statistics in Transition-new Series, Poland, 8(1), 111-123.
Sarndal, C.E., Swensson, B., & Wretman, J. (2003). Model assisted survey sampling. Springer Science & Business Media.
Singh, H.P. & Horn, S. (1998). An alternative estimator for multi-character surveys. Metrika, 48, 99-107. DOI: https://doi.org/10.1007/PL00020899
Tikkiwal G.C. & Ghiya. A. (2000). A generalized class of synthetic estimators with application to crop acreage estimation for small domains. Biometrical Journal, 42, 865-876. DOI: https://doi.org/10.1002/1521-4036(200011)42:7<865::AID-BIMJ865>3.0.CO;2-O
Tikkiwal, G.C., Rai, P.K. and Ghiya A. (2013). On the performance of generalized regression estimator for small domains. Communications in Statistics- Simulation and Computation, 42(4), 891-909. DOI: https://doi.org/10.1080/03610918.2012.659823
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Anoop Kumar, Shashi Bhushan, Rohini Pokhrel, Walid Emam, Yusra Tashkandy, M.J.S. Khan. (2024). Enhanced direct and synthetic estimators for domain mean with simulation and applications. Heliyon, 10(14), p.e33839. https://doi.org/10.1016/j.heliyon.2024.e33839.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).