Published
Forecast Quality with Information Uncertainty. Balancing and Estimation from Propensity Scores
Predicciones con incertidumbre informacional. Balance y estimación a partir de puntajes de propensión
DOI:
https://doi.org/10.15446/rce.v48n1.112678Keywords:
Error consistency, Propensity scores, Risk, Value ambiguity (en)Ambigüedad de valor, Consistencia del error, Riesgo., Puntuaciones de propensión (es)
Downloads
This study investigates whether analysts provide informative forecasts for stocks issued by _rms with greater information uncertainty. As _rm-specific information uncertainty is not directly observable, the research highlights the role of analysts' forecasts and reports in offering valuable insights to investors. It also investigates whether forecast quality is sufficiently captured by forecast bias. The findings indicate that forecast quality tends to be lower for _rms with greater information uncertainty and that forecast bias alone does not fully reflect the informational content of analysts' forecasts. Overall, the results suggest that analysts' forecasts possess positive informational value.
Este estudio investiga si los analistas proporcionan pronósticos informativos para las acciones emitidas por empresas con mayor incertidumbre de información. Dado que la incertidumbre de información específica de la empresa no es directamente observable, el artículo destaca el papel de los pronósticos y los informes de los analistas en ofrecer información valiosa a los inversores. También examina si la calidad de los pronósticos se captura adecuadamente mediante el sesgo de los pronósticos. Los resultados indican que la calidad de los pronósticos tiende a ser menor para las empresas con mayor incertidumbre de información y que el sesgo de los pronósticos por sí solo no refleja completamente el contenido informativo de estos. En conjunto, los resultados sugieren que los pronósticos de los analistas poseen un valor informativo positivo.
References
Abarbanell, J. & Lehavy, R. (2003), `Biased forecasts or biased earnings? The role of reported earnings in explaining apparent bias and over/underreaction in analysts' earnings forecasts', Journal of Accounting and Economics 36(1-3), 105-146.
Aslan, H. & Kumar, P. (2017), `Stapled financing, value certification, and lending efficiency', Journal of Financial and Quantitative Analysis 52(2), 677-703.
Asquith, P., Mikhail, M. B. & Au, A. S. (2005), `Information content of equity analyst reports', Journal of financial economics 75(2), 245-282.
Banerji, S. & Basu, P. (2017), `Universal banking, asymmetric information and the stock market', Economic Modelling 60, 180-193.
Bartov, E., Faurel, L. & Mohanram, P. S. (2018), `Can twitter help predict -rm-level earnings and stock returns?', The Accounting Review 93(3), 25-57.
Beaver, W. H. (2002), `Perspectives on recent capital market research', The Ac-counting Review 77(2), 453-474.
Benamar, H., Foucault, T. & Vega, C. (2021), `Demand for information, uncertainty, and the response of us treasury securities to news', The Review of Financial Studies 34(7), 3403-3455.
Beyer, A. & Guttman, I. (2011), `The effect of trading volume on analysts' forecast bias', The Accounting Review 86(2), 451-481.
Bilinski, P., Lyssimachou, D. & Walker, M. (2013), `Target price accuracy: International evidence', The Accounting Review 88(3), 825-851.
Blau, B. M., Brough, T. J. & Griffith, T. G. (2017), `Bank opacity and the efficiency of stock prices', Journal of Banking & Finance 76, 32-47.
Calomiris, C. W. & Kahn, C. M. (1991), `The role of demandable debt in structuring optimal banking arrangements', The American Economic Review pp. 497-513.
Chan, K. & Hameed, A. (2006), `Stock price synchronicity and analyst coverage in emerging markets', Journal of Financial Economics 80(1), 115-147.
Cheng, Y., Liu, M. H. & Qian, J. (2006), `Buy-side analysts, sell-side analysts, and investment decisions of money managers', Journal of Financial and Quantitative Analysis 41(1), 51-83.
Corea, F. (2016), `Can twitter proxy the investors' sentiment? the case for the technology sector', Big Data Research 4, 70-74.
Cowen, A., Groysberg, B. & Healy, P. (2006), `Which types of analyst -rms are more optimistic?', Journal of Accounting and Economics 41, 119-146.
Crawford, S. S., Roulstone, D. T. & So, E. C. (2012), `Analyst initiations of coverage and stock return synchronicity', The Accounting Review 87(5), 1527-1553.
Dahiya, S., Iannotta, G. & Navone, M. (2017), `Firm opacity lies in the eye of the beholder', Financial Management 46(3), 553-592.
De Silva, T. & Thesmar, D. (2024), `Noise in expectations: Evidence from analyst forecasts', The Review of Financial Studies 37(5), 1494-1537.
DeMiguel, V. & Nogales, F. J. (2009), `Portfolio selection with robust estimation', Operations Research 57(3), 560-577.
Derrien, F. & Kecskes, A. (2013), `The real effects of financial shocks: Evidence from exogenous changes in analyst coverage', The Journal of Finance 68(4), 1407-1440.
Fischer, P. E. & Stocken, P. C. (2010), `Analyst information acquisition and comunication', The Accounting Review 85(6), 1985-2009.
Flannery, M. J., Kwan, S. H. & Nimalendran, M. (2004), `Market evidence on the opaqueness of banking -rms' assets', Journal of Financial Economics 71(3), 419-460.
Forbes, W. P., Murphy, A., O'Keeffe, C. & Su, C. (2020), `Are financial analysts eager postmen of bubble psychology? evidence in the united kingdom', International Journal of Finance & Economics 25(1), 120-137.
Greenwood, B. N. & Gopal, A. (2015), `Research note - tigerblood: Newspapers, blogs, and the founding of information technology -rms', Information Systems Research 26(4), 812-828.
Groysberg, B., Healy, P. M. & Maber, D. A. (2011), `What drives sell-side analyst compensation at high-status investment banks?', Journal of Accounting Research 49(4), 969-1000.
Hansen, L. P. & Sargent, T. J. (2010), `Fragile beliefs and the price of uncertainty', Quantitative Economics 1(1), 129-162.
Hao, X., Wang, Y., Wu, C. & Wu, L. (2024), `Oil information uncertainty and aggregate market returns: A natural experiment based on satellite data', Journal of Financial Markets p. 100913.
Hilary, G. & Hsu, C. (2013), `Analyst forecast consistency', The Journal of Finance 68(1), 271-297.
Huang, A. H., Zang, A. Y. & Zheng, R. (2014), `Evidence on the information content of text in analyst reports', The Accounting Review 89(6), 2151-2180.
Huang, R. & Ratnovski, L. (2011), `The dark side of bank wholesale funding', Journal of Financial Intermediation 20(2), 248-263.
Jackson, A. R. (2005), `Trade generation, reputation, and sell-side analysts', The Journal of Finance 60(2), 673-717.
Jia, N., Rai, A. & Xu, S. X. (2020), `Reducing capital market anomaly: The role of information technology using an information uncertainty lens', Management Science 66(2), 979-1001.
Jiang, G., Lee, C. M. & Zhang, Y. (2005), `Information uncertainty and expected returns', Review of Accounting Studies 10, 185-221.
Jones, J. S., Lee, W. Y. & Yeager, T. J. (2013), `Valuation and systemic risk consequences of bank opacity', Journal of Banking & Finance 37(3), 693-706.
Joos, P., Piotroski, J. D. & Srinivasan, S. (2016), `Can analysts assess fundamental risk and valuation uncertainty? an empirical analysis of scenario-based value estimates', Journal of Financial Economics 121(3), 645-663.
Kang, W., Li, N. & Zhang, H. (2019), `Information uncertainty and the pricing of liquidity', Journal of Empirical Finance 54, 77-96.
Kumar, A. (2009), `Hard-to-value stocks, behavioral biases, and informed trading', Journal of Financial and Quantitative Analysis 44(6), 1375-1401.
Lim, T. (2001), `Rationality and analysts' forecast bias', The Journal of Finance 56(1), 369-385.
Lys, T. & Soo, L. G. (1995), `Analysts' forecast precision as a response to competition', Journal of Accounting, Auditing & Finance 10(4), 751-765.
Maccheroni, F., Marinacci, M. & Ru-no, D. (2013), `Alpha as ambiguity: Robust mean-variance portfolio analysis', Econometrica 81(3), 1075-1113.
Malmendier, U. & Shanthikumar, D. (2014), `Do security analysts speak in two tongues?', The Review of Financial Studies 27(5), 1287-1322.
Matutes, C. & Vives, X. (1996), `Competition for deposits, fragility, and insurance', Journal of Financial Intermediation 5(2), 184-216.
Mehran, H. & Peristiani, S. (2009), `Financial visibility and the decision to go private', The Review of Financial Studies 23(2), 519-547.
Mikhail, M. B., Walther, B. R. & Willis, R. H. (1999), `Does forecast accuracy matter to security analysts?', The Accounting Review 74(2), 185-200.
Morgan, D. P. (2002), `Rating banks: Risk and uncertainty in an opaque industry', American Economic Review 92(4), 874-888.
Piotroski, J. D. & Roulstone, D. T. (2004), `The influence of analysts, institutional investors, and insiders on the incorporation of market, industry, and -rm-specific information into stock prices', The Accounting Review 79(4), 1119-1151.
Quandt, R. E. (1958), `The estimation of the parameters of a linear regression system obeying two separate regimes', Journal of the american statistical association 53(284), 873-880.
Quandt, R. E. (1972), `A new approach to estimating switching regressions', Journal of the American statistical association 67(338), 306-310.
Rosenbaum, P. R. & Rubin, D. B. (1983), `The central role of the propensity score in observational studies for causal e-ects', Biometrika 70(1), 41-55.
Sambhara, C., Rai, A. & Xu, S. X. (2022), `Con-guring the enterprise systems portfolio: The role of information risk', Information Systems Research 33(2), 446-463.
Su, C., Zhang, H., Bangassa, K. & Joseph, N. L. (2019), `On the investment value of sell-side analyst recommendation revisions in the uk', Review of Quantitative Finance and Accounting 53, 257-293.
Tao, R., Brooks, C. & Bell, A. R. (2020), `When is a max not the max? how news resolves information uncertainty', Journal of Empirical Finance 57, 33-51.
Wieland, M. M. (2011), `Identifying consensus analysts' earnings forecasts that correctly and incorrectly predict an earnings increase', Journal of Business Finance & Accounting 38(5-6), 574-600.
Zhang, X. F. (2006), `Information uncertainty and stock returns', Journal of Finance 61, 105-136.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).