Published
A New Modified Post-Stratified Estimator in Finite Population Sampling
Un nuevo estimador post-estratificado modificado en muestreo de poblaciones finitas
DOI:
https://doi.org/10.15446/rce.v49n1.115571Keywords:
Finite population, Post-stratification, Stratified sampling, Subpopulation (en)Poblaciones finitas, Post-estratificación, Muestreo estratificado, Subpoblaciones (es)
Downloads
We know that post-stratification sampling is applied in a situation where it is not possible to determine the general framework of each of the categories in population before the selection sample. In this paper, we first use a method for comparing conventional estimators in the subpopulation, presented by Salehi & Seber (2021), and then introduce a new estimator in the post-stratification sampling scheme. We show that this estimator is unbiased and more precise than the estimators in simple random sampling. We have conducted a simulation study to evaluate the performance of the proposed estimator. The simulation results confirmed the theoretical achievements of the article. The data used in this article is a census of agriculture conducted by the US government every five years from all 50 states.
Se sabe que el muestreo por post-estratificación se aplica en situaciones en las que no es posible determinar, antes de seleccionar la muestra, el marco general de cada una de las categorías de la población. En este artículo, primero se utiliza un método para comparar estimadores convencionales en la subpoblación, presentado por Salehi & Seber (2021), y luego se introduce un nuevo estimador dentro del esquema de muestreo por post-estratificación. Se demuestra que este estimador es insesgado y más preciso que los estimadores bajo muestreo aleatorio simple. Además, se realiza un estudio de simulación para evaluar el desempeño del estimador propuesto. Los resultados de la simulación confirmaron los logros teóricos del artículo. Los datos utilizados corresponden a un censo agrícola que el gobierno de Estados Unidos realiza cada cinco años en los 50 estados.
References
Clark, R. G. (2009), `Sampling of subpopulations in two-stage surveys', Statistics in Medicine 28(29), 3697-3717.
Cochran, W. G. (1977), Sampling techniques, 3 edn, Wiley, New York.
Hat-eld, J. (2012), Agriculture in the Midwest, Technical report, U.S. National Climate Assessment. Midwest Technical Input Report.
Hedayat, A. S. & Sinha, B. K. (1991), Design and inference in finite population sampling, Wiley, New York.
Holt, D. & Smith, T. M. F. (1979), `Post-stratification', Journal of the Royal Statistical Society 142, 33-46.
Hossaini, M. & Rezaei, A. H. (2021), `Estimation of subpopulation parameters in one-stage cluster sampling design', Journal of the Iranian Statistical Society 20(2), 65-78.
Jagers, P., Oden, A. & Trulsson, L. (1985), `Post-stratification and ratio estimation: Usages of auxiliary information in survey sampling and opinion polls', International Statistical Review 53, 221-238.
Levy, P. S. & Lemeshow, S. (1991), Sampling of populations: Methods and applications, Wiley, New York.
Little, R. J. A. (1993), `Post stratification: A modeler's perspective', Journal of the American Statistical Association 88, 1001-1012.
Lohr, S. L. (2010), Sampling: Design and analysis, 2 edn, Brooks/Cole, Boston. Salehi, M. & Chang, K. C. (2005), `Multiple inverse sampling in post-stratification with subpopulation sizes unknown: A solution for quota sampling', Statistical Planning and Inference 131, 379-392.
Salehi, M. & Seber, G. A. F. (2021), `A new estimator and approach for estimating the subpopulation parameters', Journal of Taibah University for Science 15(1), 288-294.
Singh, D. & Chaudhary, F. S. (1986), Theory and analysis of sample survey designs, Wiley Eastern, New Delhi.
Stephan, F. F. (1945), `The expected value and variance of the reciprocal and other negative powers of a positive Bernoullian variate', The Annals of Mathematical Statistics 16, 50-61.
Thompson, S. K. (2012), Sampling techniques, 3 edn, Wiley, New York.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






