Published
Semiparametric Modelling of Cancer Mortality Trends in Colombia
Modelamiento semiparamétrico de las tendencias de mortalidad por cáncer en Colombia
DOI:
https://doi.org/10.15446/rce.v49n1.117781Keywords:
Semiparametric models, Cancer mortality, Poisson regression, Age-period modeling, Mortality trends (en)Downloads
In this paper, we compare semiparametric and parametric model adjustments for cancer mortality in breast and cervical cancer in women and gastric and lung cancer in men, according to age and period of death. Semiparametric models were adjusted for the number of deaths from the two localizations of greatest mortality by sex: breast and cervix in women; prostate and lungs in men. Adjustments in different semiparametric models were compared, which included making adjustments with different distributions and variable combinations in the parametric and non-parametric part, for localization as well as for scale. Finally, the semiparametric model with best adjustment was selected and compared to traditional model; that is, to the generalized lineal model with Poisson response and logarithmic link. Best results for the four kinds of cancer were obtained for the selected semiparametric model by comparing it to the traditional Poisson model based upon AIC, envelope correlation between estimated logarithm rate and real rate logarithm. In general, we observe that in estimation, rate increases with age; however, with respect to period, breast cancer and stomach cancer in men show a tendency to rise over time; on the other hand, for cervical cancer, it remains virtually constant, but for lung cancer in men, as of 2007, it tends to decrease.
En este artículo se comparan ajustes de modelos semiparamétricos y paramétricos para la mortalidad por cáncer de mama y de cuello uterino en mujeres, y por cáncer gástrico y de pulmón en hombres, de acuerdo con la edad y el periodo de defunción. Se ajustaron modelos semiparamétricos para el número de muertes por las dos localizaciones de mayor mortalidad según sexo: mama y cuello uterino en mujeres, próstata y pulmón en hombres. Se compararon ajustes en diferentes modelos semiparamétricos, que incluyeron ajustes con distintas distribuciones y combinaciones de variables en la parte paramétrica y no paramétrica, tanto para la localización como para la escala. Finalmente, se seleccionó el modelo semiparamétrico con mejor ajuste y se comparó con el modelo tradicional, es decir, con el modelo lineal generalizado con respuesta Poisson y enlace logarítmico. Los mejores resultados para los cuatro tipos de cáncer se obtuvieron con el modelo semiparamétrico seleccionado al compararlo con el modelo Poisson tradicional, con base en el AIC y en la correlación envolvente entre el logaritmo de la tasa estimada y el logaritmo de la tasa real. En general, se observa que, en la estimación, la tasa aumenta con la edad. Sin embargo, respecto al periodo, el cáncer de mama y el cáncer de estómago en hombres muestran una tendencia creciente a lo largo del tiempo. Por otra parte, para el cáncer de cuello uterino se mantiene prácticamente constante, pero para el cáncer de pulmón en hombres, a partir de 2007, tiende a disminuir.
References
Berk, R. & MacDonald, J. M. (2008). Overdispersion and Poisson regression. Journal of Quantitative Criminology, 24(3), 269–284.
Cabanes, A., Vidal, E., Pérez-Gómez, B., Aragonés, N., López-Abente, G. & Pollán, M. (2009). Age-specific breast, uterine and ovarian cancer mortality trends in Spain: Changes from 1980 to 2006. Cancer Epidemiology, 33(3–4), 169–175.
Clèries, R., Martínez, J. M., Escribà, J. M., Esteban, L., Pareja, L., Borrás, J. M. & Ribes, J. (2010). Monitoring the decreasing trend of testicular cancer mortality in Spain during 2005–2019 through a Bayesian approach. Cancer Epidemiology, 34(3), 244–256.
DANE (2017). Demografía y población. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion
Guo, P. & Li, K. (2012). Trends in esophageal cancer mortality in China during 1987–2009: Age, period and birth cohort analyses. Cancer Epidemiology, 36(2), 99–105.
Instituto Nacional de Cancerología, Ministerio de Salud y Protección Social & COLCIENCIAS (2013). Guía de práctica clínica (GPC) para la detección temprana, tratamiento integral, seguimiento y rehabilitación del cáncer de mama.
Kvåle, R., Møller, B., Angelsen, A., Dahl, O., Fosså, S. D., Halvorsen, O. J., Hoem, L., Solberg, A., Wahlqvist, R. & Bray, F. (2010). Regional trends in prostate cancer incidence, treatment with curative intent and mortality in Norway 1980–2007. Cancer Epidemiology, 34(4), 359–367.
Marchant, D. J. (1982). Epidemiology of breast cancer. Clinical Obstetrics and Gynecology, 25(2), 387–392.
National Cancer Institute (2015). Risk factors for cancer. https://www.cancer.gov/about-cancer/causes-prevention/risk
Ohshima, H. & Bartsch, H. (1994). Chronic infections and inflammatory processes as cancer risk factors: Possible role of nitric oxide in carcinogenesis. Mutation Research, 305(2), 253–264.
Pike, M. C., Spicer, D. V., Dahmoush, L. & Press, M. F. (1993). Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiologic Reviews, 15(1), 17–35.
Piñeros, M., Pardo, C., Gamboa, O. & Hernández, G. (2010). Atlas de mortalidad por cáncer en Colombia (3ª ed.). Imprenta Nacional de Colombia.
R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Vanegas, L. H. & Paula, G. A. (2015). A semiparametric approach for joint modeling of median and skewness. TEST, 24(1), 110–135.
Vanegas, L. H. & Paula, G. A. (2016). ssym: Fitting semi-parametric log-symmetric regression models. R package version 1.5.7. https://CRAN.R-project.org/package=ssym
World Health Organization (2016). International classification of diseases. https://www.who.int/classifications/icd/en/
World Health Organization (2017). Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






