Published
Bivariate Simplex Distribution
Distribución Simplex Bivariada
DOI:
https://doi.org/10.15446/rce.v49n1.118380Keywords:
Bivariate Simplex distribution, Copulas, FGM copula, Maximum likelihood estimation (en)Distribución Simplex bivariada, Cópulas, Cópula FGM, Estimación por máxima verosimilitud, Datos acotados (es)
Downloads
This article introduces a bivariate Simplex distribution constructed via copula functions, particularly the Farlie–Gumbel–Morgenstern (FGM) copula, to model bounded continuous data defined on the unit interval. The proposed model allows flexible dependence structures while preserving analytical tractability. Maximum likelihood estimation procedures are derived, and extensive simulation studies are conducted to evaluate the performance of the estimators under different scenarios. Applications to real-world data, including mental health disorder prevalence and jurimetric indicators, illustrate the adequacy and interpretability of the proposed bivariate Simplex framework.
Este artículo introduce una distribución Simplex bivariada construida mediante funciones cópula, en particular la cópula de Farlie–Gumbel–Morgenstern (FGM), para modelar datos continuos acotados en el intervalo unitario. El modelo propuesto permite estructuras de dependencia flexibles conservando la tractabilidad analítica. Se desarrollan procedimientos de estimación por máxima verosimilitud y se realizan estudios de simulación extensivos para evaluar el desempeño de los estimadores bajo distintos escenarios. Las aplicaciones a datos reales, incluyendo prevalencia de trastornos de salud mental e indicadores jurimétricos, ilustran la adecuación e interpretabilidad del marco Simplex bivariado propuesto.
References
Andreopoulos, P., Bersimis, G. F., Tragaki, A., and Rovolis, A. (2019). Mortality modeling using probability distributions. application in greek mortality data. Communications in Statistics-Theory and Methods, 48, 127–140.
Arnold, B. C. and Ng, H. K. T. (2011). Flexible bivariate beta distributions. Journal of Multivariate Analysis, 102, 1194–1202.
Barndorff-Nielsen, O. E. and Jørgensen, B. (1991). Some parametric models on the simplex. Journal of multivariate analysis, 39, 106–116.
Barros, O. A. d. (2015). Estima¸c˜ao dos parˆametros da distribui¸c˜ao beta bivariada: aplica¸c˜oes em severidade de doen¸cas em plantas. Ph.D. thesis, University of S˜ao Paulo, Brazil.
Biswas, A. and Chakraborty, S. (2019). r = p(y ≤ x) for unit-lindley distribution: inference with an application in public health. https: // arxiv. org/ abs/ 1904. 06181 .
Biswas, A., Chakraborty, S., and Mukherjee, M. (2021). On estimation of stress–strength reliability with log-lindley distribution. Journal of Statistical Computation and Simulation, 91, 128–150.
G´omez-D´eniz, E., Sordo, M. A., and Calder´ın-Ojeda, E. (2014). The log–lindley distribution as an alternative to the beta regression model with applications in insurance. Insurance: Mathematics and Economics, 54, 49–57.
Gupta, A. K. and Wong, C. (1985). On three and five parameter bivariate beta distributions. Metrika, 32, 85–91.
Hoeffding, W. (1940). Masstabinvariante korrelationstheorie. Schriften des Mathematischen Instituts und Instituts fur Angewandte Mathematik der Universitat Berlin, 5, 181–233.
Johnson, M. E. (1987). Multivariate Statistical Simulation. John Wiley Sons, New York. Jones, M. C. (2002). Multivariate t and beta distributions associated with the multivariate f distribution. Metrika, 54, 215–231.
Jorgensen, B. (1997). The theory of dispersion models. CRC Press.
Kotz, S., Balakrishnan, N., and Johnson, N. L. (2019). Continuous multivariate distributions: Models and applications. John Wiley and Sons.
Krop´aˇc, O. (1982). Some properties and applications of probability distributions based on macdonald function. Aplikace matematiky, 27, 285–302.
Lai, C. D. and Balakrishnan, N. (2009). Continuous bivariate distributions. Springer.
Machado Moschen, L. and Carvalho, L. M. (2023). Bivariate beta distribution: parameter inference and diagnostics. https: // arxiv. org/ abs/ 2303. 01271 .
Mazucheli, J., Menezes, A. F. B., and Chakraborty, S. (2019). On the one parameter unitlindley distribution and its associated regression model for proportion data. Journal of Applied Statistics, 46, 700–714.
Nadarajah, S. and Kotz, S. (2005). Some bivariate beta distributions. Statistics, 39, 457–466.
Nelder, J. A. and Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135, 370–384.
Olkin, I. and Liu, R. (2003). A bivariate beta distribution. Statistics and Probability Letters, 62, 407–412.
Olkin, I. and Trikalinos, T. A. (2015). Constructions for a bivariate beta distribution. Statistics and Probability Letters, 96, 54–60.
Olver, F. W. J., Lozier, D. W., Boisvert, R. F., and Clark, C. W. (2010). NIST handbook of mathematical functions. Cambridge University Press.
Sarabia, J. M. and Castillo, E. (2006). Bivariate distributions based on the generalized threeparameter beta distribution. Advances in distribution theory, order statistics, and inference, 31, 85–110.
Sklar, M. (1959). Fonctions de r´epartition a n dimensions et leurs marges. I’nstitut Statistique de l’Universit´e de Paris, 8, 229–231.
Song, P. X.-K. and Tan, M. (2000). Marginal models for longitudinal continuous proportional data. Biometrics, 56, 496–502.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






