Published

2026-01-01

Bivariate Simplex Distribution

Distribución Simplex Bivariada

DOI:

https://doi.org/10.15446/rce.v49n1.118380

Keywords:

Bivariate Simplex distribution, Copulas, FGM copula, Maximum likelihood estimation (en)
Distribución Simplex bivariada, Cópulas, Cópula FGM, Estimación por máxima verosimilitud, Datos acotados (es)

Downloads

Authors

  • Emerson Alves Federal University of Bahia
  • Lucas Vieira Federal University of Bahia
  • Lizandra Fabio Federal University of Bahia
  • Vanessa Barros Federal University of Bahia
  • Jalmar Carrasco Federal University of Bahia

This article introduces a bivariate Simplex distribution constructed via copula functions, particularly the Farlie–Gumbel–Morgenstern (FGM) copula, to model bounded continuous data defined on the unit interval. The proposed model allows flexible dependence structures while preserving analytical tractability. Maximum likelihood estimation procedures are derived, and extensive simulation studies are conducted to evaluate the performance of the estimators under different scenarios. Applications to real-world data, including mental health disorder prevalence and jurimetric indicators, illustrate the adequacy and interpretability of the proposed bivariate Simplex framework.

Este artículo introduce una distribución Simplex bivariada construida mediante funciones cópula, en particular la cópula de Farlie–Gumbel–Morgenstern (FGM), para modelar datos continuos acotados en el intervalo unitario. El modelo propuesto permite estructuras de dependencia flexibles conservando la tractabilidad analítica. Se desarrollan procedimientos de estimación por máxima verosimilitud y se realizan estudios de simulación extensivos para evaluar el desempeño de los estimadores bajo distintos escenarios. Las aplicaciones a datos reales, incluyendo prevalencia de trastornos de salud mental e indicadores jurimétricos, ilustran la adecuación e interpretabilidad del marco Simplex bivariado propuesto.

References

Andreopoulos, P., Bersimis, G. F., Tragaki, A., and Rovolis, A. (2019). Mortality modeling using probability distributions. application in greek mortality data. Communications in Statistics-Theory and Methods, 48, 127–140.

Arnold, B. C. and Ng, H. K. T. (2011). Flexible bivariate beta distributions. Journal of Multivariate Analysis, 102, 1194–1202.

Barndorff-Nielsen, O. E. and Jørgensen, B. (1991). Some parametric models on the simplex. Journal of multivariate analysis, 39, 106–116.

Barros, O. A. d. (2015). Estima¸c˜ao dos parˆametros da distribui¸c˜ao beta bivariada: aplica¸c˜oes em severidade de doen¸cas em plantas. Ph.D. thesis, University of S˜ao Paulo, Brazil.

Biswas, A. and Chakraborty, S. (2019). r = p(y ≤ x) for unit-lindley distribution: inference with an application in public health. https: // arxiv. org/ abs/ 1904. 06181 .

Biswas, A., Chakraborty, S., and Mukherjee, M. (2021). On estimation of stress–strength reliability with log-lindley distribution. Journal of Statistical Computation and Simulation, 91, 128–150.

G´omez-D´eniz, E., Sordo, M. A., and Calder´ın-Ojeda, E. (2014). The log–lindley distribution as an alternative to the beta regression model with applications in insurance. Insurance: Mathematics and Economics, 54, 49–57.

Gupta, A. K. and Wong, C. (1985). On three and five parameter bivariate beta distributions. Metrika, 32, 85–91.

Hoeffding, W. (1940). Masstabinvariante korrelationstheorie. Schriften des Mathematischen Instituts und Instituts fur Angewandte Mathematik der Universitat Berlin, 5, 181–233.

Johnson, M. E. (1987). Multivariate Statistical Simulation. John Wiley Sons, New York. Jones, M. C. (2002). Multivariate t and beta distributions associated with the multivariate f distribution. Metrika, 54, 215–231.

Jorgensen, B. (1997). The theory of dispersion models. CRC Press.

Kotz, S., Balakrishnan, N., and Johnson, N. L. (2019). Continuous multivariate distributions: Models and applications. John Wiley and Sons.

Krop´aˇc, O. (1982). Some properties and applications of probability distributions based on macdonald function. Aplikace matematiky, 27, 285–302.

Lai, C. D. and Balakrishnan, N. (2009). Continuous bivariate distributions. Springer.

Machado Moschen, L. and Carvalho, L. M. (2023). Bivariate beta distribution: parameter inference and diagnostics. https: // arxiv. org/ abs/ 2303. 01271 .

Mazucheli, J., Menezes, A. F. B., and Chakraborty, S. (2019). On the one parameter unitlindley distribution and its associated regression model for proportion data. Journal of Applied Statistics, 46, 700–714.

Nadarajah, S. and Kotz, S. (2005). Some bivariate beta distributions. Statistics, 39, 457–466.

Nelder, J. A. and Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135, 370–384.

Olkin, I. and Liu, R. (2003). A bivariate beta distribution. Statistics and Probability Letters, 62, 407–412.

Olkin, I. and Trikalinos, T. A. (2015). Constructions for a bivariate beta distribution. Statistics and Probability Letters, 96, 54–60.

Olver, F. W. J., Lozier, D. W., Boisvert, R. F., and Clark, C. W. (2010). NIST handbook of mathematical functions. Cambridge University Press.

Sarabia, J. M. and Castillo, E. (2006). Bivariate distributions based on the generalized threeparameter beta distribution. Advances in distribution theory, order statistics, and inference, 31, 85–110.

Sklar, M. (1959). Fonctions de r´epartition a n dimensions et leurs marges. I’nstitut Statistique de l’Universit´e de Paris, 8, 229–231.

Song, P. X.-K. and Tan, M. (2000). Marginal models for longitudinal continuous proportional data. Biometrics, 56, 496–502.

How to Cite

APA

Alves, E., Vieira, L., Fabio, L., Barros, V. & Carrasco, J. (2026). Bivariate Simplex Distribution. Revista Colombiana de Estadística, 49(1), 131–159. https://doi.org/10.15446/rce.v49n1.118380

ACM

[1]
Alves, E., Vieira, L., Fabio, L., Barros, V. and Carrasco, J. 2026. Bivariate Simplex Distribution. Revista Colombiana de Estadística. 49, 1 (Jan. 2026), 131–159. DOI:https://doi.org/10.15446/rce.v49n1.118380.

ACS

(1)
Alves, E.; Vieira, L.; Fabio, L.; Barros, V.; Carrasco, J. Bivariate Simplex Distribution. Rev. colomb. estad. 2026, 49, 131-159.

ABNT

ALVES, E.; VIEIRA, L.; FABIO, L.; BARROS, V.; CARRASCO, J. Bivariate Simplex Distribution. Revista Colombiana de Estadística, [S. l.], v. 49, n. 1, p. 131–159, 2026. DOI: 10.15446/rce.v49n1.118380. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/118380. Acesso em: 9 feb. 2026.

Chicago

Alves, Emerson, Lucas Vieira, Lizandra Fabio, Vanessa Barros, and Jalmar Carrasco. 2026. “Bivariate Simplex Distribution”. Revista Colombiana De Estadística 49 (1):131-59. https://doi.org/10.15446/rce.v49n1.118380.

Harvard

Alves, E., Vieira, L., Fabio, L., Barros, V. and Carrasco, J. (2026) “Bivariate Simplex Distribution”, Revista Colombiana de Estadística, 49(1), pp. 131–159. doi: 10.15446/rce.v49n1.118380.

IEEE

[1]
E. Alves, L. Vieira, L. Fabio, V. Barros, and J. Carrasco, “Bivariate Simplex Distribution”, Rev. colomb. estad., vol. 49, no. 1, pp. 131–159, Jan. 2026.

MLA

Alves, E., L. Vieira, L. Fabio, V. Barros, and J. Carrasco. “Bivariate Simplex Distribution”. Revista Colombiana de Estadística, vol. 49, no. 1, Jan. 2026, pp. 131-59, doi:10.15446/rce.v49n1.118380.

Turabian

Alves, Emerson, Lucas Vieira, Lizandra Fabio, Vanessa Barros, and Jalmar Carrasco. “Bivariate Simplex Distribution”. Revista Colombiana de Estadística 49, no. 1 (January 30, 2026): 131–159. Accessed February 9, 2026. https://revistas.unal.edu.co/index.php/estad/article/view/118380.

Vancouver

1.
Alves E, Vieira L, Fabio L, Barros V, Carrasco J. Bivariate Simplex Distribution. Rev. colomb. estad. [Internet]. 2026 Jan. 30 [cited 2026 Feb. 9];49(1):131-59. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/118380

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

26

Downloads

Download data is not yet available.