Published
Performance and Agreement Between Some Normality Tests Under the Presence and Lack of Outliers
Desempeño y concordancia entre algunas pruebas de normalidad en presencia y ausencia de valores atípicos
DOI:
https://doi.org/10.15446/rce.v49n1.118393Keywords:
Concordance, Normality, Outliers, Performance, Simulation (en)Concordancia, Desempeño, Pruebas de normalidad, Simulación, Valores atípicos (es)
Downloads
This study evaluated the performance of various normality tests including Shapiro–Wilk, Shapiro–Francia, Anderson–Darling, Lilliefors, Cramer–von Mises, and Jarque–Bera under different conditions, both with and without the presence of outliers. Monte Carlo simulations were conducted to calculate the type I error rates, power, and the Kappa–Fleiss agreement coefficient, which measured the concordance among the tests. For normally distributed data without outliers, the Shapiro–Wilk and Shapiro–Francia tests showed the best control over the type I error rate. In contrast, with the introduction of outliers, the Lilliefors and Cramer–von Mises tests performed better. In terms of test power, the Shapiro–Wilk and Shapiro–Francia tests performed best for distributions without outliers, while the Jarque–Bera test was more robust in the presence of outliers. Overall, the results highlight the sensitivity of these tests to sample size and the presence of outliers, suggesting that Shapiro–Wilk and Shapiro–Francia are suitable for data without outliers, while Jarque–Bera may be preferred in contaminated samples. The tests showed higher concordance for exponential and lognormal distributions but lower concordance for beta, χ², and t-Student distributions, illustrating the complexity of normality identification across various contexts.
Este estudio evaluó el desempeño de diversas pruebas de normalidad incluyendo Shapiro–Wilk, Shapiro–Francia, Anderson–Darling, Lilliefors, Cramer–von Mises y Jarque–Bera bajo diferentes condiciones, tanto con como sin la presencia de valores atípicos. Se realizaron simulaciones de Monte Carlo para calcular las tasas de error tipo I, la potencia y el coeficiente de concordancia Kappa–Fleiss, que mide la concordancia entre las pruebas.
Para datos distribuidos normalmente sin valores atípicos, las pruebas de Shapiro–Wilk y Shapiro–Francia mostraron el mejor control sobre la tasa de error tipo I. En contraste, con la introducción de valores atípicos, las pruebas de Lilliefors y Cramer–von Mises tuvieron un mejor desempeño. En términos de potencia, las pruebas de Shapiro–Wilk y Shapiro–Francia obtuvieron los mejores resultados para distribuciones sin valores atípicos, mientras que la prueba de Jarque–Bera fue más robusta en presencia de valores atípicos.
En general, los resultados destacan la sensibilidad de estas pruebas al tamaño de la muestra y a la presencia de valores atípicos, sugiriendo que Shapiro–Wilk y Shapiro–Francia son adecuadas para datos sin valores atípicos, mientras que Jarque–Bera puede ser preferida en muestras contaminadas. Las pruebas mostraron mayor concordancia para distribuciones exponenciales y lognormales, pero menor concordancia para distribuciones beta, χ² y t-Student, lo que ilustra la complejidad de identificar la normalidad en diversos contextos.
References
Anderson, T. W. & Darling, D. A. (1952). Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. The Annals of Mathematical Statistics, 23(2), 193–212.
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46.
Cramer, H. (1957). Mathematical theory of statistics. The Annals of Mathematical Statistics.
Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76(5), 378–382.
Jarque, C. M. & Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6, 255–259.
Lilliefors, H. W. (1967). On the Kolmogorov–Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association, 62(318), 399–402.
Morettin, P. A. & de O. Bussab, W. (2010). Estatística Básica (6ª ed.). Saraiva.
R Core Team (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Shapiro, S. S. & Francia, R. S. (1972). An approximate analysis of variance test for normality. Journal of the American Statistical Association, 67(337), 215–216.
Shapiro, S. S. & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591–611.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






