Published
The Adaptive Baumgartner-Type Test Statistics for Two-Sample Independent Problem
Estadísticas de prueba tipo Baumgartner adaptativas para el problema de dos muestras independientes
DOI:
https://doi.org/10.15446/rce.v49n1.118494Keywords:
Nonparametric tests, Baumgartner-type statistics, Location-scale shift, Relative ranking, Simulations (en)Cambio de ubicación-escala, Estadísticas tipo Baumgartner, Pruebas no paramétricas, Ranking relativo, Simulaciones (es)
Downloads
The two-sample independent problem remains a persistent challenge in statistical analysis. Parametric tests, such as Student's t-test and Welch's t-test, are commonly employed to assess the significance of differences between the means of two groups. However, these methods rely on the assumption of normally distributed populations. When this assumption is violated, nonparametric alternatives like the Wilcoxon-Mann-Whitney, Yuen-Welch, Brunner-Munzel, and Baumgartner tests offer robust solutions. This study introduces an adaptive framework for nonparametric two-sample tests, building upon the foundation of Baumgartner-type tests. To enhance statistical power, we incorporate a recently proposed relative rank transformation method that is more resilient to scale differences between the two samples. The adaptive tests are suitable for both location and scale comparisons. Through extensive Monte Carlo simulations, we evaluate the power performance of our adaptive tests under diverse distributional scenarios. Our results demonstrate that adaptive tests offer a substantial advantage over traditional nonparametric methods. To illustrate the practical application of our approaches, we apply the adaptive tests along their competitors to six real-world biomedical datasets. These examples highlight the reliability and effectiveness of the proposed methodology in addressing the two-sample independent location-scale testing problem.
El problema de dos muestras independientes sigue siendo un desafío persistente en el análisis estadístico. Las pruebas paramétricas, como la prueba t de Student y la prueba t de Welch, se emplean comúnmente para evaluar la significancia de las diferencias entre las medias de dos grupos. Sin embargo, estos métodos se basan en el supuesto de poblaciones distribuidas normalmente. Cuando este supuesto se viola, alternativas no paramétricas como las pruebas de Wilcoxon-Mann-Whitney, Yuen-Welch, Brunner-Munzel y Baumgartner ofrecen soluciones robustas. Este estudio introduce un marco adaptativo para pruebas no paramétricas de dos muestras, basado en pruebas tipo Baumgartner. Para mejorar la potencia estadística, se incorpora un método de transformación de rangos relativos recientemente propuesto, el cual es más resistente a las diferencias de escala entre las dos muestras. Las pruebas adaptativas son adecuadas tanto para comparaciones de ubicación como de escala. A través de extensas simulaciones de Monte Carlo, se evalúa el desempeño en potencia de las pruebas adaptativas bajo diversos escenarios distribucionales. Los resultados demuestran que las pruebas adaptativas ofrecen una ventaja sustancial frente a los métodos no paramétricos tradicionales. Para ilustrar la aplicación práctica de los enfoques propuestos, se aplican las pruebas adaptativas junto con sus competidores a seis conjuntos de datos biomédicos reales, destacando la confiabilidad y efectividad de la metodología propuesta para abordar el problema de pruebas de ubicación-escala en dos muestras independientes.
References
Baumgartner, W., Weiß, P., & Schindler, H. (1998). A nonparametric test for the general two-sample problem. Biometrics, 54, 1129–1135.
Brunner, E., & Munzel, U. (2000). The nonparametric Behrens–Fisher problem: Asymptotic theory and a small-sample approximation. Biometrical Journal, 42, 17–25.
Casella, G., & Berger, R. L. (2002). Statistical inference. Duxbury Press, Pacific Grove, CA.
Conover, W. J. (1999). Practical nonparametric statistics (3rd ed.). John Wiley & Sons, New York.
Fagerland, M. W., & Sandvik, L. (2009). Performance of five two-sample location tests for skewed distributions with unequal variances. Contemporary Clinical Trials, 30(5), 490–496.
Gosset, W. S. (1908). William Sealy Gosset. In Biographical Encyclopedia of Mathematicians (Vol. 1, p. 239).
Hettmansperger, T. P., & McKean, J. W. (2011). Robust nonparametric statistical methods (2nd ed.). CRC Press, Boca Raton, FL.
Hollander, M., & Wolfe, D. A. (1999). Nonparametric statistical methods. Wiley, New York.
Hollander, M., Wolfe, D. A., & Chicken, E. (2013). Nonparametric statistical methods (3rd ed.). John Wiley & Sons.
Hussain, A., Drekic, S., & Cheema, S. A. (2024). A relative-rank measure for the rank transformation. Statistics & Probability Letters, 204, 109932.
Karpatkin, M., Porges, R. F., & Karpatkin, S. (1981). Platelet counts in infants of women with autoimmune thrombocytopenia: Effects of steroid administration to the mother. The New England Journal of Medicine, 305(16), 936–939.
Lindsey, D. C., Herzberg, A. M., & Watts, D. G. (1987). A method of cluster analysis based on projections and quantile–quantile plots. Biometrics, 43, 327–341.
Manly, B. F. (2018). Randomization, bootstrap and Monte Carlo methods in biology. Chapman and Hall/CRC.
Mittelstadt, B. D., & Floridi, L. (2016). The ethics of big data: Current and foreseeable issues in biomedical contexts. In The Ethics of Biomedical Big Data (pp. 445–480).
Moran, J. L. (2006). Statistical issues in the analysis of outcomes in critical care medicine (Doctoral dissertation).
Murakami, H. (2006). A k-sample rank test based on modified Baumgartner statistic and its power comparison. Journal of the Japanese Society of Computational Statistics, 19(1), 1–13.
Siegel, S., & Castellan, N. J. (1988). Nonparametric statistics for the behavioral sciences (2nd ed.). McGraw-Hill, New York.
Tasdan, F., & Sievers, G. (2009). Smoothed Mann–Whitney–Wilcoxon procedure for the two-sample location problem. Communications in Statistics – Theory and Methods, 38(6), 856–870.
Welch, B. L. (1938). The significance of the difference between two means when the population variances are unequal. Biometrika, 29(3/4), 350–362.
Wild, C. J., & Seber, G. A. F. (1999). Chance encounters: A first course in data analysis and inference. John Wiley & Sons, New York.
Yuen, K. K. (1974). The two-sample trimmed t for unequal population variances. Biometrika, 61, 165–170.
Zaremba, S. K. (1965). Note on the Wilcoxon–Mann–Whitney statistic. The Annals of Mathematical Statistics, 36(3), 1058–1060.
Zimmerman, D. W. (2012). A note on consistency of non-parametric rank tests and related rank transformations. British Journal of Mathematical and Statistical Psychology, 65(1), 122–144.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






