Published
Dual to Ratio Type Class of Estimators for the Estimation of Population Mean Using Auxiliary Variable in Simple Random Sampling
Clase de estimadores duales al tipo razón para la estimación de la media poblacional utilizando una variable auxiliar en muestreo aleatorio simple
DOI:
https://doi.org/10.15446/rce.v49n1.118615Keywords:
Dual to ratio type class of estimators, Empirical study, Mean squared error, Simple random sampling, Simulation study (en)Clase de estimadores dual al tipo razón, Error cuadrático medio, Estudio de simulación, Estudio empírico, Muestreo aleatorio simple. (es)
Downloads
In this article, we introduce a dual to ratio-type class of estimators for population mean under simple random sampling using information on auxiliary variable, inspired by the estimator proposed by Srivenkataramana (1980) and Kumar & Siddiqui (2024). Our goal is to develop an efficient class of estimators for population mean. We have derived the bias and mean squared error of the proposed estimator up to the first order of approximation. We have derived the optimum condition at which the suggested class of estimators attained the minimum mean squared error. To assess the performance of the suggested class of estimators,we compare the MSE of our proposed estimator with that of several existing estimators. From the theoretical analysis, we demonstrate that the proposed dual to ratiotype class of estimators exhibits a lower mean squared error compared to some existing alternatives, indicating that it is more efficient. This suggests that the proposed class of estimators provides more accurate estimates for a given sample size. To validate our theoretical results,we have performed a simulation study, which confirms that the proposed estimator consistently outperforms with some existing estimators in terms of efficiency, regardless of whether the study is empirical or simulation based. These findings provide compelling evidence for the effectiveness of the proposed class of estimators in practical applications.
En este artículo, presentamos una clase de estimadores duales al tipo razón para la estimación de la media poblacional bajo muestreo aleatorio simple, utilizando información de una variable auxiliar, inspirados en el estimador propuesto por Srivenkataramana (1980) y Kumar & Siddiqui (2024). Nuestro objetivo es desarrollar una clase eficiente de estimadores para la media poblacional. Hemos derivado el sesgo y el error cuadrático medio del estimador propuesto hasta el primer orden de aproximación. También hemos determinado la condición óptima bajo la cual la clase sugerida de estimadores alcanza el error cuadrático medio mínimo. Para evaluar el rendimiento de la clase propuesta de estimadores, comparamos el ECM (error cuadrático medio) de nuestro estimador con el de varios estimadores existentes. A partir del análisis teórico, demostramos que la clase de estimadores dual al tipo razón propuesta presenta un error cuadrático medio menor en comparación con algunas alternativas existentes, lo que indica que es más eficiente. Esto sugiere que la clase de estimadores propuesta proporciona estimaciones más precisas para un tamaño de muestra dado. Para validar nuestros resultados teóricos, realizamos un estudio de simulación, el cual confirma que el estimador propuesto supera de manera constante a algunos estimadores existentes en términos de eficiencia, independientemente de si el estudio es empírico o basado en simulación. Estos hallazgos proporcionan evidencia contundente sobre la efectividad de la clase propuesta de estimadores en aplicaciones prácticas.
References
Adhvaryu, D. & Gupta, P. C. (1983), `On some alternative strategies using auxiliary information', Metrika 30, 217-226.
Bahl, S. & Tuteja, R. K. (1991), `Ratio and product type exponential estimators', Journal of Information and Optimization Sciences 12(1), 159-164.
Bandyopadhyay, S. (1980), `Improved ratio and product estimator', Sankhya: Series C 42, 45-49.
Bhushan, S., Kumar, A., Singh, S. & Kumar, S. (2021), `An improved class of estimators of population mean under simple random sampling', Philippine Statistician 70(1), 33-47.
Cochran, W. G. (1940), `The estimation of yields of cereal experiments by sampling for ratio of grain to total produce', Journal of Agricultural Science 30, 262-275.
Cochran, W. G. (1977), Sampling techniques, 3 edn, John Wiley & Sons, New York.
Ijaz, M. & Ali, H. (2018), `Some improved ratio estimators for estimating mean of finite population', Research and Reviews: Journal of Statistics and Mathematical Sciences 4, 18-23.
Javed, M., Irfan, M., Shongwe, S. C., Hussain, M. A. & Meetei, Z. (2025), `Difference-cum-exponential-type estimators for estimation of finite population mean in survey sampling', PLoS ONE 20(1), e0313712.
Kadilar, C. & Cingi, H. (2006), `Improvement in estimating the population mean in simple random sampling', Applied Mathematics Letters 19, 75-79.
Kadilar, G. O. (2016), `A new exponential type estimator for the population mean in simple random sampling', Journal of Modern Applied Statistical Methods 15, 207-214.
Kumar, A. & Siddiqui, A. S. (2024), `Enhanced estimation of population mean using simple random sampling', Research in Statistics 2(1).
Kumar, A., Siddiqui, A. S., Mustafa, M. S., Hossam, E., Aljohani, H. M. & Almulhim, F. (2024), `Mean estimation using an efficient class of estimators based on simple random sampling: Simulation and applications', Alexandria Engineering Journal pp. 197-203.
Murthy, M. N. (1964), `Product method of estimator', The Indian Journal of Statistics 26, 69-74.
Naik, V. D. & Gupta, P. C. (1991), `A general class of estimators for estimating population mean using auxiliary information', Metrika 38, 11-17.
Robson, D. S. (1957), `Applications of multivariate polykays to the theory of unbiased ratio-type estimation', Journal of the American Statistical Association 52, 511-522.
Searls, D. T. (1964), `Utilization of a known coefficient of variation in the estimation procedure', Journal of the American Statistical Association 59, 1225-1226.
Sher, K., Iqbal, M., Ali, H., Iftikhar, S., Aphane, M. & Audu, A. (2025), `Novel efficient estimators of finite population mean in simple random sampling', Scientific African 27, e02598.
Singh, H. P. & Kakran, M. S. (1993), A modified ratio estimator using known coefficient of kurtosis of an auxiliary character. Unpublished manuscript.
Singh, H. P., Solanki, R. K. S. & Singh, A. (2009), `Improvement in estimating the population mean using exponential estimator in simple random sampling', Bulletin of Economics and Statistics 3, 13-18.
Singh, H. P. & Tailor, R. (2003), `Use of known correlation coefficient in estimating the finite population mean', Statistics in Transition 6(4), 555-560.
Sisodia, B. V. S. & Dwivedi, V. K. (1981), `A modified ratio estimator using coefficient of variation of auxiliary variable', Journal of the Indian Society of Agricultural Statistics 33, 13-18.
Srivastava, S. K. (1967), `An estimator using auxiliary information', Calcutta Statistical Association Bulletin 16, 121-132.
Srivenkataramana, T. (1980), `A dual to ratio estimator in sample surveys', Biometrika Journal 67(1), 199-204.
Upadhyaya, L. N. & Singh, H. P. (1999), `An estimator of population variance that utilizes the kurtosis of an auxiliary variable in sample surveys', Vikram Mathematical Journal 19, 14-17.
Vos, J. W. E. (1980), `Mixing of direct, ratio and product method estimators', Statistica Neerlandica 34, 209-218.
Walsh, J. E. (1970), `Generalization of ratio estimator for population total', Sankhya: Series A 32, 99-106.
Watson, D. J. (1937), `The estimation of leaf area in field crops', Journal of Agricultural Science 27, 474-483.
Yadav, S., Arya, D., Vishwakarma, G. & Verma, M. (2023), `Generalized ratiocum-exponential-log ratio type estimators of population mean under simple random sampling scheme', Lobachevskii Journal of Mathematics 44, 3889-3901.
Yadav, S. K., Dixit, M. K., Dungana, H. N. & Mishra, S. S. (2019), `Improved estimators for estimating average yield using auxiliary variable', International Journal of Mathematical, Engineering and Management Sciences 4, 1228-1238.
Yadav, S. K. & Kadilar, C. (2013), `Efficient family of exponential estimators for the population mean', Hacettepe Journal of Mathematics and Statistics 42, 671-677.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






