Published

2026-01-01

Asymmetric Chi-square Test and Cohen’s w in Contingency Tables

Prueba de chi-cuadrado y w de Cohen asimétricas en tablas de contingencia

DOI:

https://doi.org/10.15446/rce.v49n1.118682

Keywords:

Asymmetric relationship, Chi-square test, Cohen’s w (en)
Prueba de chi-cuadrado, Relación asimétrica, w de Cohen (es)

Downloads

Authors

  • Luis D'Angelo University of Buenos Aires

This article presents a new asymmetric version of Cohen's w for analyzing contingency tables. As an extension of this established effect size measure, the proposed index quantifies the effect of one variable on another, providing a valuable complement to null hypothesis significance testing. While specific procedures exist for assessing these directional relationships, they exhibit significant limitations in certain scenarios. Furthermore, we introduce a normalization process that constrains the coefficient to a [0, 1] range, enhancing interpretability for both researchers and practitioners. Finally, we present an asymmetric chi-square coefficient that aligns naturally with the proposed effect size, ensuring full conceptual coherence between hypothesis testing and effect size estimation. This coefficient also avoids the interpretability pitfalls that commonly arise when the traditional chi-square test is applied to inherently asymmetric relationships.

Este artículo presenta una nueva versión asimétrica de la w de Cohen para analizar tablas de contingencia. Como una extensión de esta medida de tamaño del efecto ya establecida, el índice propuesto cuantifica el efecto de una variable sobre otra, constituyendo un valioso complemento a las pruebas de significación de hipótesis nula. Si bien existen procedimientos específicos para evaluar estas relaciones direccionales, estos presentan limitaciones significativas en ciertos escenarios. Además, se introduce un proceso de normalización que restringe el coeficiente al rango [0, 1], mejorando su interpretabilidad tanto para investigadores como para profesionales. Finalmente, se presenta un coeficiente de chi-cuadrado asimétrico que se alinea naturalmente con el tamaño del efecto propuesto, garantizando coherencia conceptual entre la prueba de hipótesis y la estimación de la magnitud del efecto, y evitando problemas de interpretación asociados al uso del chi-cuadrado tradicional en relaciones inherentemente asimétricas.

References

Agresti, J. (2002). Categorical Data Analysis. John Wiley & Sons.

Algina, J., Keselman, H. J., & Penfield, R. D. (2006). Confidence interval coverage for Cohen’s effect size statistic. Educational and Psychological Measurement, 66(6), 945–960. Sage Publications.

Ben-Shachar, M. S., Patil, I., Thériault, R., Wiernik, B. M., & Lüdecke, D. (2023). Phi, Fei, Fo, Fum: Effect sizes for categorical data that use the chi-squared statistic. Mathematics, 11(9).

Berry, K. J., Johnston, J. E., & Mielke, J. P. (2018). The Measurement of Association: A Permutation Statistical Approach. Springer.

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. John Wiley & Sons.

Cochran, W. G. (1952). The χ² test of goodness of fit. Annals of Mathematical Statistics, 23, 315–345.

Cochran, W. G. (1954). Some methods for strengthening the common chi-squared tests. Biometrics, 10, 417–451.

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates.

Crack, T. F. (2018). A note on Karl Pearson’s 1900 chi-squared test: Two derivations of the asymptotic distribution, and uses in goodness of fit and contingency tests of independence, and a comparison with the exact sample variance chi-square result.

Cramer, H. (1946). Mathematical Methods of Statistics. Princeton University Press.

DeGroot, M. H. (1988). Probabilidad y estadística. Addison Wesley.

Edgington, E. S., & Onghena, P. (2007). Randomization Tests. Chapman & Hall/CRC.

Fisher, R. A. (1925). Statistical Methods for Research Workers. Oliver and Boyd.

Fleiss, J., Levin, B., & Paik, M. C. (2003). Statistical Methods for Rates and Proportions. Wiley.

Franke, T. M., Ho, T., & Christie, C. A. (2012). The chi-square test: Often used and more often misinterpreted. American Journal of Evaluation, 33, 448–458.

Good, P. (2005). Permutation, Parametric, and Bootstrap Tests of Hypotheses. Springer.

Goodman, L. A., & Kruskal, W. H. (1963). Measures of association for cross classifications III: Approximate sampling theory. Journal of the American Statistical Association, 58(302), 310–364.

Grissom, R. J., & Kim, J. J. (2012). Effect Sizes for Research: Univariate and Multivariate Applications (2nd ed.). Routledge.

Haddock, C. K., Rindskopf, D., & Shadish, W. R. (1998). Using odds ratios as effect sizes for meta-analysis of dichotomous data: A primer on methods and issues. Psychological Methods, 3(3).

Jané, M. B., Ben-Shachar, M. S., Moreau, D., Steele, J., Qinyu, X., Caldwell, A. R., & Zloteanu, M. (2024). Guide to effect sizes and confidence intervals.

Kelly, K. (2007). Confidence intervals for standardized effect sizes: Theory, application, and implementation. Journal of Statistical Software, 20(8), 1–24.

Lock, R. H., Lock, P. F., Lock Morgan, K., Lock, E. F., & Lock, D. F. (2021). Statistics: Unlocking the Power of Data. Wiley.

Mangiafico, S. (2023). An R Companion for the Handbook of Biological Statistics.

Pearson, K. (1900). On the probability that two independent distributions of frequency are really samples from the same population. Biometrika, 8(1), 250–254.

Pearson, K. (1904). On the theory of contingency and its relation to association and normal correlation. Biometrika, 1–34. https://ia801300.us.archive.org/8/items/cu31924003064833/cu31924003064833.pdf

Rita, H., & Komonen, A. (2008). Odds ratio: An ecologically sound tool to compare proportions. Annales Zoologici Fennici, 45(1), 66–72.

Rosenthal, R. (1994). Parametric measures of effect size. In H. Cooper & L. V. Hedges (Eds.), The Handbook of Research Synthesis (p. 239). Russell Sage Foundation.

Sánchez-Meca, J., Marín-Martínez, F., & Salvador Chacón-Moscoso, S. (2003). Effect-size indices for dichotomized outcomes in meta-analysis. Psychological Methods, 8(4).

Steiger, J. H. (2004). Beyond the F test: Effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis. Psychological Methods, 9(2), 164–182.

Yates, F. (1934). Contingency table involving small numbers and the χ² test. Supplement to the Journal of the Royal Statistical Society, 217–235.

Yule, G. U. (1911). An Introduction to the Theory of Statistics. C. Griffin and Company.

Zaiontz, C. (2024). Real Statistics Using Excel. https://real-statistics.com/

How to Cite

APA

D'Angelo, L. (2026). Asymmetric Chi-square Test and Cohen’s w in Contingency Tables. Revista Colombiana de Estadística, 49(1), 89–107. https://doi.org/10.15446/rce.v49n1.118682

ACM

[1]
D'Angelo, L. 2026. Asymmetric Chi-square Test and Cohen’s w in Contingency Tables. Revista Colombiana de Estadística. 49, 1 (Jan. 2026), 89–107. DOI:https://doi.org/10.15446/rce.v49n1.118682.

ACS

(1)
D'Angelo, L. Asymmetric Chi-square Test and Cohen’s w in Contingency Tables. Rev. colomb. estad. 2026, 49, 89-107.

ABNT

D'ANGELO, L. Asymmetric Chi-square Test and Cohen’s w in Contingency Tables. Revista Colombiana de Estadística, [S. l.], v. 49, n. 1, p. 89–107, 2026. DOI: 10.15446/rce.v49n1.118682. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/118682. Acesso em: 9 feb. 2026.

Chicago

D'Angelo, Luis. 2026. “Asymmetric Chi-square Test and Cohen’s w in Contingency Tables”. Revista Colombiana De Estadística 49 (1):89-107. https://doi.org/10.15446/rce.v49n1.118682.

Harvard

D'Angelo, L. (2026) “Asymmetric Chi-square Test and Cohen’s w in Contingency Tables”, Revista Colombiana de Estadística, 49(1), pp. 89–107. doi: 10.15446/rce.v49n1.118682.

IEEE

[1]
L. D'Angelo, “Asymmetric Chi-square Test and Cohen’s w in Contingency Tables”, Rev. colomb. estad., vol. 49, no. 1, pp. 89–107, Jan. 2026.

MLA

D'Angelo, L. “Asymmetric Chi-square Test and Cohen’s w in Contingency Tables”. Revista Colombiana de Estadística, vol. 49, no. 1, Jan. 2026, pp. 89-107, doi:10.15446/rce.v49n1.118682.

Turabian

D'Angelo, Luis. “Asymmetric Chi-square Test and Cohen’s w in Contingency Tables”. Revista Colombiana de Estadística 49, no. 1 (January 30, 2026): 89–107. Accessed February 9, 2026. https://revistas.unal.edu.co/index.php/estad/article/view/118682.

Vancouver

1.
D'Angelo L. Asymmetric Chi-square Test and Cohen’s w in Contingency Tables. Rev. colomb. estad. [Internet]. 2026 Jan. 30 [cited 2026 Feb. 9];49(1):89-107. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/118682

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

57

Downloads

Download data is not yet available.