Published
Asymmetric Chi-square Test and Cohen’s w in Contingency Tables
Prueba de chi-cuadrado y w de Cohen asimétricas en tablas de contingencia
DOI:
https://doi.org/10.15446/rce.v49n1.118682Keywords:
Asymmetric relationship, Chi-square test, Cohen’s w (en)Prueba de chi-cuadrado, Relación asimétrica, w de Cohen (es)
Downloads
This article presents a new asymmetric version of Cohen's w for analyzing contingency tables. As an extension of this established effect size measure, the proposed index quantifies the effect of one variable on another, providing a valuable complement to null hypothesis significance testing. While specific procedures exist for assessing these directional relationships, they exhibit significant limitations in certain scenarios. Furthermore, we introduce a normalization process that constrains the coefficient to a [0, 1] range, enhancing interpretability for both researchers and practitioners. Finally, we present an asymmetric chi-square coefficient that aligns naturally with the proposed effect size, ensuring full conceptual coherence between hypothesis testing and effect size estimation. This coefficient also avoids the interpretability pitfalls that commonly arise when the traditional chi-square test is applied to inherently asymmetric relationships.
Este artículo presenta una nueva versión asimétrica de la w de Cohen para analizar tablas de contingencia. Como una extensión de esta medida de tamaño del efecto ya establecida, el índice propuesto cuantifica el efecto de una variable sobre otra, constituyendo un valioso complemento a las pruebas de significación de hipótesis nula. Si bien existen procedimientos específicos para evaluar estas relaciones direccionales, estos presentan limitaciones significativas en ciertos escenarios. Además, se introduce un proceso de normalización que restringe el coeficiente al rango [0, 1], mejorando su interpretabilidad tanto para investigadores como para profesionales. Finalmente, se presenta un coeficiente de chi-cuadrado asimétrico que se alinea naturalmente con el tamaño del efecto propuesto, garantizando coherencia conceptual entre la prueba de hipótesis y la estimación de la magnitud del efecto, y evitando problemas de interpretación asociados al uso del chi-cuadrado tradicional en relaciones inherentemente asimétricas.
References
Agresti, J. (2002). Categorical Data Analysis. John Wiley & Sons.
Algina, J., Keselman, H. J., & Penfield, R. D. (2006). Confidence interval coverage for Cohen’s effect size statistic. Educational and Psychological Measurement, 66(6), 945–960. Sage Publications.
Ben-Shachar, M. S., Patil, I., Thériault, R., Wiernik, B. M., & Lüdecke, D. (2023). Phi, Fei, Fo, Fum: Effect sizes for categorical data that use the chi-squared statistic. Mathematics, 11(9).
Berry, K. J., Johnston, J. E., & Mielke, J. P. (2018). The Measurement of Association: A Permutation Statistical Approach. Springer.
Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. John Wiley & Sons.
Cochran, W. G. (1952). The χ² test of goodness of fit. Annals of Mathematical Statistics, 23, 315–345.
Cochran, W. G. (1954). Some methods for strengthening the common chi-squared tests. Biometrics, 10, 417–451.
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates.
Crack, T. F. (2018). A note on Karl Pearson’s 1900 chi-squared test: Two derivations of the asymptotic distribution, and uses in goodness of fit and contingency tests of independence, and a comparison with the exact sample variance chi-square result.
Cramer, H. (1946). Mathematical Methods of Statistics. Princeton University Press.
DeGroot, M. H. (1988). Probabilidad y estadística. Addison Wesley.
Edgington, E. S., & Onghena, P. (2007). Randomization Tests. Chapman & Hall/CRC.
Fisher, R. A. (1925). Statistical Methods for Research Workers. Oliver and Boyd.
Fleiss, J., Levin, B., & Paik, M. C. (2003). Statistical Methods for Rates and Proportions. Wiley.
Franke, T. M., Ho, T., & Christie, C. A. (2012). The chi-square test: Often used and more often misinterpreted. American Journal of Evaluation, 33, 448–458.
Good, P. (2005). Permutation, Parametric, and Bootstrap Tests of Hypotheses. Springer.
Goodman, L. A., & Kruskal, W. H. (1963). Measures of association for cross classifications III: Approximate sampling theory. Journal of the American Statistical Association, 58(302), 310–364.
Grissom, R. J., & Kim, J. J. (2012). Effect Sizes for Research: Univariate and Multivariate Applications (2nd ed.). Routledge.
Haddock, C. K., Rindskopf, D., & Shadish, W. R. (1998). Using odds ratios as effect sizes for meta-analysis of dichotomous data: A primer on methods and issues. Psychological Methods, 3(3).
Jané, M. B., Ben-Shachar, M. S., Moreau, D., Steele, J., Qinyu, X., Caldwell, A. R., & Zloteanu, M. (2024). Guide to effect sizes and confidence intervals.
Kelly, K. (2007). Confidence intervals for standardized effect sizes: Theory, application, and implementation. Journal of Statistical Software, 20(8), 1–24.
Lock, R. H., Lock, P. F., Lock Morgan, K., Lock, E. F., & Lock, D. F. (2021). Statistics: Unlocking the Power of Data. Wiley.
Mangiafico, S. (2023). An R Companion for the Handbook of Biological Statistics.
Pearson, K. (1900). On the probability that two independent distributions of frequency are really samples from the same population. Biometrika, 8(1), 250–254.
Pearson, K. (1904). On the theory of contingency and its relation to association and normal correlation. Biometrika, 1–34. https://ia801300.us.archive.org/8/items/cu31924003064833/cu31924003064833.pdf
Rita, H., & Komonen, A. (2008). Odds ratio: An ecologically sound tool to compare proportions. Annales Zoologici Fennici, 45(1), 66–72.
Rosenthal, R. (1994). Parametric measures of effect size. In H. Cooper & L. V. Hedges (Eds.), The Handbook of Research Synthesis (p. 239). Russell Sage Foundation.
Sánchez-Meca, J., Marín-Martínez, F., & Salvador Chacón-Moscoso, S. (2003). Effect-size indices for dichotomized outcomes in meta-analysis. Psychological Methods, 8(4).
Steiger, J. H. (2004). Beyond the F test: Effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis. Psychological Methods, 9(2), 164–182.
Yates, F. (1934). Contingency table involving small numbers and the χ² test. Supplement to the Journal of the Royal Statistical Society, 217–235.
Yule, G. U. (1911). An Introduction to the Theory of Statistics. C. Griffin and Company.
Zaiontz, C. (2024). Real Statistics Using Excel. https://real-statistics.com/
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






