Published

2026-01-01

On Parametric Modal Beta Regression

Modelo de regresión Beta Modal

DOI:

https://doi.org/10.15446/rce.v49n1.118686

Keywords:

Mode, Beta regression, Parametric modal regression, Maximum likelihood (en)
Moda, Regresión beta, Regresión modal paramétrica, Máxima verosimilitud (es)

Downloads

Authors

  • Erika Fernandes Federal University of Rio Grande do Norte
  • Francisco Medeiros Federal University of Rio Grande do Norte https://orcid.org/0000-0001-6751-2666
  • Marcelo Bourguignon Federal University of Rio Grande do Norte

The beta regression model is part of a class of models applied to continuous responses restricted to the standard unit interval, such as rates and proportions. Ferrari & Cribari-Neto (2004) proposed the beta regression model incorporating covariates in the mean of the distribution through a link function. However, for studies in which the response variable presents asymmetry and/or discrepant values, this model may not be appropriate. A more convenient measure of central tendency in this situation is the mode of the distribution because of its robustness to outliers and easy interpretation in the presence of asymmetry. Zhou et al. (2020) proposed a parameterization for the beta distribution in terms of the mode and a precision parameter and presented a modal regression model robust to outliers. In this work, we present a more complete study of the modal beta regression properties and performance and a comparison between this model and the usual beta regression model. We perform Monte Carlo simulation studies to evaluate the maximum likelihood estimators under different scenarios of asymmetry and sensitivity to outliers when some patterns of disturbance are imposed. Furthermore, we propose and evaluate three residuals for this class of models. The numerical results suggest that the modal regression model presents a good performance on symmetrical and asymmetrical data and in most scenarios, it performs better in the presence of outliers than the usual beta regression model. Finally, we present and discuss two empirical applications and a comparative analysis of the mean and modal beta regression models.

El modelo de regresión beta es parte de una clase de modelos aplicados a respuestas continuas restringidas al intervalo unitario estándar, como tasas y proporciones. Ferrari & Cribari-Neto (2004) propuso el modelo de regresión beta incorporando covariables en la media de la distribución a través de una función de enlace. Sin embargo, para estudios en los que la variable respuesta presenta asimetría y/o valores discrepantes, este modelo puede no ser apropiado. Una medida de tendencia central más conveniente en esta situación es la moda de la distribución debido a que es robusta para valores atípicos y también a su fácil interpretación en presencia de asimetría. Zhou et al. (2020) propuso una parametrización para la distribución beta en términos de la moda y un parámetro de precisión y presentó un modelo de regresión modal robusto a valores atípicos. En este trabajo, presentamos un estudio más completo de las propiedades y el desempeño de la regresión beta modal y una comparación entre este modelo y el modelo de regresión beta usual. Fueron realizados estudios de simulación de Monte Carlo para evaluar los estimadores de máxima verosimilitud en diferentes escenarios de asimetría y sensibilidad a valores atípicos cuando se imponen algunos patrones de perturbación. Además, proponemos y evaluamos tres residuos para esta clase de modelos. Los resultados numéricos sugieren que el modelo de regresión beta modal presenta un buen desempeño en datos simétricos y asimétricos y, en la mayoría de los escenarios, se desempeña mejor en presencia de valores atípicos que el modelo de regresión beta habitual. Finalmente, fueron presentadas y discutidas dos aplicaciones empíricas y un análisis comparativo de los modelos de regresión beta media y modal.

References

Aristodemou, K. (2014). New regression methods for measures of central tendency. PhD thesis.

Atkinson, A. C. (1985). Plots, transformations, and regression: An introduction to graphical methods of diagnostic regression analysis. Oxford University Press, Oxford, UK.

Bayes, C. L., Bazán, J. L., García, C., et al. (2012). A new robust regression model for proportions. Bayesian Analysis, 7(4), 841–866.

Bourguignon, M., & Gallardo, D. I. (2025). A general and unified parameterization of the beta distribution: A flexible and robust beta regression model. Statistica Neerlandica, 79(2), e70007.

Bourguignon, M., Leão, J., & Gallardo, D. (2020). Parametric modal regression with varying precision. Biometrical Journal, 62(1), 202–220.

Cao, X., Wang, D., & Wu, L. (2023). Performance of ridge estimator in skew-normal mode regression model. Communications in Statistics – Simulation and Computation, 52(3), 1164–1177.

Cepeda-Cuervo, E. (2015). Beta regression models: Joint mean and variance modeling. Journal of Statistical Theory and Practice, 9, 134–145.

Cepeda, E. C. (2001). Variability modeling in generalized linear models. PhD thesis, Mathematics Institute, Universidade Federal do Rio de Janeiro. Unpublished.

https://repositorio.unal.edu.co/handle/unal/11839

Cepeda, E., & Gamerman, D. (2005). Bayesian methodology for modeling parameters in the two-parameter exponential family. Revista Estadística, 57(168–169), 93–105.

Cox, D., & Hinkley, D. (1983). Theoretical statistics. Chapman and Hall, London.

Cox, D. R., & Snell, E. J. (1968). A general definition of residuals. Journal of the Royal Statistical Society: Series B (Methodological), 30, 248–275.

http://www.jstor.org/stable/2984505

Dunn, P., & Smyth, G. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statistics, 5, 236–244.

Espinheira, P. L., Ferrari, S. L. P., & Cribari-Neto, F. (2008a). Influence diagnostics in beta regression. Computational Statistics & Data Analysis, 52(9), 4417–4431.

Espinheira, P. L., Ferrari, S. L. P., & Cribari-Neto, F. (2008b). On beta regression residuals. Journal of Applied Statistics, 35(4), 407–419.

Espinheira, P. L., Santos, E. G., & Cribari-Neto, F. (2017). On nonlinear beta regression residuals. Biometrical Journal, 59(3), 445–461.

Ferrari, S. L. P., & Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. Journal of Applied Statistics, 31(7), 799–815.

Ghitany, M., Mazucheli, J., Menezes, A., & Alqallaf, F. (2019). The unit-inverse Gaussian distribution: A new alternative to two-parameter distributions on the unit interval. Communications in Statistics – Theory and Methods, 48(14), 3423–3438.Ho, C.-s., Damien, P. & Walker, S. (2017), 'Bayesian mode regression using

mixtures of triangular densities', Journal of Econometrics 197(2), 273283.

https://www.sciencedirect.com/science/article/pii/S0304407616302184

Kemp, G. C., & Santos Silva, J. (2012). Regression towards the mode. Journal of Econometrics, 170(1), 92–101.

Kieschnick, R., & McCullough, B. D. (2003). Regression analysis of variates observed on (0, 1): Percentages, proportions and fractions. Statistical Modelling, 3(3), 193–213.

Lee, M. (1989). Mode regression. Journal of Econometrics, 42(3), 337–349.

Lee, M. (1993). Quadratic mode regression. Journal of Econometrics, 57(1–3), 1–19.

Oelker, M., Sobotka, F., Klein, N., & Kneib, T. (2015). Semiparametric Bayesian mode regression. Computational Statistics & Data Analysis, 90, 18–30.

Ospina, P. L. E. (2007). Regressão beta. PhD thesis, Universidade de São Paulo.

Ospina, R., & Ferrari, S. L. P. (2010). Inflated beta distributions. Statistical Papers, 51(1), 111.

R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

https://www.R-project.org/

Sager, T. W., & Thisted, R. A. (1982). Maximum likelihood estimation of isotonic modal regression. The Annals of Statistics, 10, 690–707.

Yao, W., & Li, L. (2014). A new regression model: Modal linear regression. Scandinavian Journal of Statistics, 41(3), 656–671.

Zhou, H., Huang, X., & ADN Initiative. (2020). Parametric mode regression for bounded responses. Biometrical Journal, 62(7), 1791–1809.

How to Cite

APA

Fernandes, E., Medeiros, F. & Bourguignon, M. (2026). On Parametric Modal Beta Regression. Revista Colombiana de Estadística, 49(1), 33–63. https://doi.org/10.15446/rce.v49n1.118686

ACM

[1]
Fernandes, E., Medeiros, F. and Bourguignon, M. 2026. On Parametric Modal Beta Regression. Revista Colombiana de Estadística. 49, 1 (Jan. 2026), 33–63. DOI:https://doi.org/10.15446/rce.v49n1.118686.

ACS

(1)
Fernandes, E.; Medeiros, F.; Bourguignon, M. On Parametric Modal Beta Regression. Rev. colomb. estad. 2026, 49, 33-63.

ABNT

FERNANDES, E.; MEDEIROS, F.; BOURGUIGNON, M. On Parametric Modal Beta Regression. Revista Colombiana de Estadística, [S. l.], v. 49, n. 1, p. 33–63, 2026. DOI: 10.15446/rce.v49n1.118686. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/118686. Acesso em: 9 feb. 2026.

Chicago

Fernandes, Erika, Francisco Medeiros, and Marcelo Bourguignon. 2026. “On Parametric Modal Beta Regression”. Revista Colombiana De Estadística 49 (1):33-63. https://doi.org/10.15446/rce.v49n1.118686.

Harvard

Fernandes, E., Medeiros, F. and Bourguignon, M. (2026) “On Parametric Modal Beta Regression”, Revista Colombiana de Estadística, 49(1), pp. 33–63. doi: 10.15446/rce.v49n1.118686.

IEEE

[1]
E. Fernandes, F. Medeiros, and M. Bourguignon, “On Parametric Modal Beta Regression”, Rev. colomb. estad., vol. 49, no. 1, pp. 33–63, Jan. 2026.

MLA

Fernandes, E., F. Medeiros, and M. Bourguignon. “On Parametric Modal Beta Regression”. Revista Colombiana de Estadística, vol. 49, no. 1, Jan. 2026, pp. 33-63, doi:10.15446/rce.v49n1.118686.

Turabian

Fernandes, Erika, Francisco Medeiros, and Marcelo Bourguignon. “On Parametric Modal Beta Regression”. Revista Colombiana de Estadística 49, no. 1 (January 30, 2026): 33–63. Accessed February 9, 2026. https://revistas.unal.edu.co/index.php/estad/article/view/118686.

Vancouver

1.
Fernandes E, Medeiros F, Bourguignon M. On Parametric Modal Beta Regression. Rev. colomb. estad. [Internet]. 2026 Jan. 30 [cited 2026 Feb. 9];49(1):33-6. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/118686

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

38

Downloads

Download data is not yet available.