Published
New Calibration Estimators of Population Variance in the Presence of Random Non-Response under Successive Sampling Scheme
Nuevos estimadores de calibración de la varianza poblacional en presencia de falta de respuesta aleatoria bajo un esquema de muestreo sucesivo
DOI:
https://doi.org/10.15446/rce.v49n1.119505Keywords:
Calibration estimator, Mean square error, Random non-response, Two-occasion sampling (en)Error cuadrático medio, Estimador de calibración, Muestreo en dos ocasiones, Respuesta no aleatoria (es)
Downloads
This research addresses the challenge of estimating population variance in surveys conducted over two-occasion (successive) sampling, particularly when dealing with non-response. The study introduces a traditional estimator and two new calibration-based estimators to mitigate the impact of non-response. These calibration estimators are designed to improve the accuracy and reliability of estimates derived from successive sampling surveys, where non-sampling errors can significantly distort the data and the resulting population parameters. The study provides expressions for the proposed estimators and analyzes their statistical properties. Simulation studies reveal that the calibration estimators outperform the traditional estimator in terms of bias, mean squared error, and relative absolute bias, especially when non-response rates are high.
Esta investigación aborda el reto de estimar la varianza poblacional en encuestas realizadas con muestreos sucesivos, en particular en el caso de la falta de respuesta. El estudio introduce un estimador tradicional y dos nuevos estimadores basados en calibración para mitigar el impacto de la falta de respuesta. Estos estimadores de calibración están diseñados para mejorar la precisión y la fiabilidad de las estimaciones derivadas de encuestas con muestreos sucesivos, donde los errores no muestrales pueden distorsionar significativamente los datos y los parámetros poblacionales resultantes. El estudio proporciona expresiones para los estimadores propuestos y analiza sus propiedades estadísticas. Estudios de simulación revelan que los estimadores de calibración superan al estimador tradicional en términos de sesgo, error cuadrático medio y sesgo absoluto relativo, especialmente cuando las tasas de falta de respuesta son altas.
References
Ahmed, A., Adewara, A. A., & Singh, R. V. K. (2016). Class of ratio estimators with known functions of auxiliary variable for estimating finite population variance. Asian Journal of Mathematics and Computer Research, 12(1), 63–70.
Ali, H., Asim, S. M., Ijaz, M., Zaman, T., & Iftikhar, S. (2024). Improvement in variance estimation using transformed auxiliary variable under simple random sampling. Scientific Reports, 14(1), 8117. https://doi.org/10.1038/s41598-024-58117-3
Audu, A., Ishaq, O. O., Singh, R. V. K., & Yunusa, M. A. (2025). Logarithmic-type estimators of population coefficient of variation under successive sampling in the presence of non-response and measurement errors. Revista Investigación Operacional, 46(4), 535–554.
Audu, A., Lekganyane, M., Ishaq, O. O., & Aremu, K. O. (2024). Two-step calibrated designed weighted estimators of finite population variance for a mailed survey design characterized by non-response. Revista Colombiana de Estadística – Theoretical Statistics, 47(2), 193–210.
Audu, A., Singh, R. V. K., Ishaq, O. O., Khare, S., Singh, R., & Adewara, A. A. (2024). On the estimation of finite population variance for a mail survey design in the presence of non-response using new conventional and calibrated estimators. Communications in Statistics – Theory and Methods, 53(3), 848–864. https://doi.org/10.1080/03610926.2022.2102823
Bhushan, A., & Singh, H. P. (2021). Improved estimation of population variance in two-stage cluster sampling. Journal of Statistical Theory and Practice, 15(2), 1–21.
Gupta, S., & Shabbir, J. (2016). Estimation of population variance in two-phase sampling. Communications in Statistics – Theory and Methods, 45(10), 3013–3024.
Kadilar, C., & Cingi, H. (2020). Variance estimation in two-phase sampling with partially defective items. Communications in Statistics – Simulation and Computation, 49(2), 305–319.
Khan, M. G., Khan, S. U., & Ahmad, N. (2017). Efficient estimators of population variance in two-phase sampling. Communications in Statistics – Theory and Methods, 46(24), 12324–12338.
Little, R. J. A., & Rubin, D. B. (2019). Statistical analysis with missing data (3rd ed.). John Wiley & Sons.
Muhammad, I., Zakari, Y., & Audu, A. (2022). Generalized estimators for finite population variance using measurable and affordable auxiliary character. Asian Research Journal of Mathematics, 18(1), 14–30.
Naz, F., Abid, M., Nawaz, T., & Pang, T. (2020). Enhancing efficiency of ratio-type estimators of population variance by a combination of information on robust location measures. Scientia Iranica, 27(4), 2040–2056.
Özgür, E. M., & Çavuş, Ö. (2018). Dual-frame estimators for population variance. Hacettepe Journal of Mathematics and Statistics, 47(5), 1221–1235.
Pandey, M. K., Singh, G. N., Zaman, T., Al Mutairi, A., & Mustafa, M. S. (2024). Improved estimation of population variance in stratified successive sampling using calibrated weights under non-response. Heliyon, 10(6), e29236.
Pandey, M. K., Singh, G. N., Zaman, T., Mutairi, A. A., & Mustafa, M. S. (2024). A general class of improved population variance estimators under nonsampling errors using calibrated weights in stratified sampling. Scientific Reports, 14(1), 2948. https://doi.org/10.1038/s41598-024-52948-0
Shabbir, J., & Gupta, S. (2017). Estimation of population variance in two-stage cluster sampling. Communications in Statistics – Theory and Methods, 46(19), 9614–9624.
Shahzad, U., Ahmad, I., García-Luengo, A. V., Zaman, T., Al-Noor, N. H., & Kumar, A. (2023). Estimation of coefficient of variation using calibrated estimators in double stratified random sampling. Mathematics, 11(1), 252.
Shakeel, M., & Shabbir, J. (2019). Estimation of population variance in two-phase sampling using auxiliary information. Communications in Statistics – Simulation and Computation, 48(7), 2017–2031.
Singh, G. N., Bhattacharyya, D., & Bandyopadhyay, A. (2019). Formulation of logarithmic-type estimators to estimate population mean in successive sampling in the presence of random non-response and measurement errors. Communications in Statistics – Simulation and Computation, 51(3), 901–923.
Singh, G. N., & Homa, F. (2013). Effective rotation patterns in successive sampling over two occasions. Journal of Statistical Theory and Practice, 7(1), 146–155.
Singh, G. N., Khalid, M., & Kim, J. M. (2021). Some imputation methods to deal with the problems of missing data in two-occasion successive sampling. Communications in Statistics – Simulation and Computation, 50(2), 557–580.
Singh, H. P., & Jafa, R. (2019). Improved estimation of population variance in two-phase sampling. Communications in Statistics – Theory and Methods, 48(12), 2884–2902.
Singh, H. P., Jafa, R., & Goyal, S. (2021). Improved estimation of population variance using auxiliary information in two-phase sampling. Communications in Statistics – Simulation and Computation, 91(9), 1729–1750.
Zaman, T., & Bulut, H. (2023). Robust calibration for estimating the population mean using stratified random sampling. Scientia Iranica. https://doi.org/10.24200/SCI.2023.61344.5815
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






