Published

2026-01-01

Inference for Multivariate Interval Data: Bridging Frequentist and Bayesian Paradigms

Inferencia para datos interválicos multivariados: un puente entre los paradigmas frecuentista y bayesiano

DOI:

https://doi.org/10.15446/rce.v49n1.119621

Keywords:

Bayesian estimation, Entropy loss, Interval-valued data, L2 loss, Maximum likelihood estimation (en)
Datos interválicos, Estimación bayesiana, Estimación por máxima verosimilitud, Pérdida L2, Pérdida por entropía (es)

Downloads

Authors

  • Ali Sadeghkhani Department of Mathematics and Statistics, Faculty of Science, University of Windsor
  • Abdolnasser Sadeghkhani Department of Mathematics and Statistics, College of Science and Technology
  • Abdulkadir Hussein Department of Mathematics and Statistics, Faculty of Science, University of Windsor

In recent years, the challenges posed by massive datasets have led researchers to explore aggregated representations, particularly interval-valued data, within the framework of symbolic data analysis. Although most recent research—apart from Samadi et al. (2024), who focused on the bivariate case—has primarily addressed parameter estimation in univariate settings, this paper extends these investigations to the general multivariate case for the first time. We derive maximum likelihood (ML) estimators for the parameters and establish their asymptotic distributions. Additionally, we develop a theoretical Bayesian framework, previously confined to the univariate setting, and extend it to multivariate interval-valued data. We provide a detailed exposition of the proposed estimators and conduct comparative performance analyses. Finally, we validate the effectiveness of our estimators through simulations and real-world data analysis.

En los últimos años, los desafíos que plantean los conjuntos de datos masivos han llevado a los investigadores a explorar representaciones agregadas, en particular datos interválicos, en el marco del análisis de datos simbólicos. Aunque la investigación más reciente —salvo Samadi et al. (2024), quienes se centraron en el caso bivariado— ha abordado principalmente la estimación de parámetros en contextos univariados, este trabajo extiende por primera vez dichas investigaciones al caso multivariado general. Derivamos estimadores de máxima verosimilitud (MV) para los parámetros y establecemos sus distribuciones asintóticas. Además, desarrollamos un marco bayesiano teórico, previamente restringido al entorno univariado, y lo extendemos a datos interválicos multivariados. Presentamos una exposición detallada de los estimadores propuestos y realizamos análisis comparativos de desempeño. Finalmente, validamos la efectividad de nuestros estimadores mediante simulaciones y análisis de datos reales.

References

Amari, S.-i. (2016). Information geometry and its applications. Springer.

Arroyo, J., & Maté, C. (2009). Forecasting histogram time series with k-nearest neighbours methods. International Journal of Forecasting, 25(1), 192–207.

Barachant, A., Bonnet, S., Congedo, M., & Jutten, C. (2013). Classification of covariance matrices using a Riemannian-based kernel for BCI applications. Neurocomputing, 112, 172–178.

Beranger, B., Lin, H., & Sisson, S. (2023). New models for symbolic data analysis. Advances in Data Analysis and Classification, 17(3), 659–699.

Bertrand, P., & Goupil, F. (2000). Descriptive statistics for symbolic data. In Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data (pp. 106–124). Springer.

Billard, L. (2008). Sample covariance functions for complex quantitative data. In Proceedings of the World IASC Conference (pp. 157–163).

Billard, L. (2011). Brief overview of symbolic data and analytic issues. Statistical Analysis and Data Mining, 4(2), 149–156.

Billard, L., & Diday, E. (2003). From the statistics of data to the statistics of knowledge: symbolic data analysis. Journal of the American Statistical Association, 98(462), 470–487.

Billard, L., & Diday, E. (2012). Symbolic Data Analysis: Conceptual Statistics and Data Mining. John Wiley & Sons.

Bock, H.-H., & Diday, E. (2012). Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data. Springer.

Brito, P., & Duarte Silva, A. P. (2012). Modelling interval data with normal and skew-normal distributions. Journal of Applied Statistics, 39(1), 3–20.

Clark, C. E. (1962). The PERT model for the distribution of an activity time. Operations Research, 10(3).

Diday, E. (1988). The symbolic approach in clustering and related methods of data analysis. In Classification and Related Methods of Data Analysis (pp. 673–684). North-Holland.

Gil, M. Á., González-Rodríguez, G., Colubi, A., & Montenegro, M. (2007). Testing linear independence in linear models with interval-valued data. Computational Statistics & Data Analysis, 51(6), 3002–3015.

Irpino, A., & Verde, R. (2006). A new Wasserstein-based distance for the hierarchical clustering of histogram symbolic data. In Data Science and Classification (pp. 185–192). Springer.

Korkmaz, S., Goksuluk, D., & Zararsiz, G. (2014). Mvn: An R package for assessing multivariate normality.

Lauro, C. N., & Palumbo, F. (2000). Principal component analysis of interval data: a symbolic data analysis approach. Computational Statistics, 15(1), 73–87.

Le-Rademacher, J., & Billard, L. (2011). Likelihood functions and some maximum likelihood estimators for symbolic data. Journal of Statistical Planning and Inference, 141(4), 1593–1602.

Lin, H., Caley, M. J., & Sisson, S. A. (2022). Estimating global species richness using symbolic data meta-analysis. Ecography, 2022(3), e05617.

Nielsen, F. (2023). A simple approximation method for the Fisher–Rao distance between multivariate normal distributions. Entropy, 25(4), 654.

Sadeghkhani, A. (2025). On multivariate triangular-valued data. Discover Data, 3(1), 53.

Sadeghkhani, A., & Sadeghkhani, A. (2025). On inference of boxplot symbolic data: applications in climatology. Advances in Statistical Climatology, Meteorology and Oceanography, 11(1), 73–87.

Samadi, S. Y., Billard, L., Guo, J.-H., & Xu, W. (2024). MLE for the parameters of bivariate interval-valued model. Advances in Data Analysis and Classification, 18(4), 827–850.

Skovgaard, L. T. (1984). A Riemannian geometry of the multivariate normal model. Scandinavian Journal of Statistics, 11, 211–223.

Stein, C. (1956). Some problems in multivariate analysis, Part I. Department of Statistics, Stanford University.

Xu, M., & Qin, Z. (2024). Bayesian framework for interval-valued data using Jeffreys’ prior and posterior predictive checking methods. Communications in Statistics – Simulation and Computation, 53(5), 2425–2443.

Zhu, J., & Billard, L. (2025). Clustering interval-valued data using principal components. Journal of Statistical Theory and Practice, 19(4), 78.

How to Cite

APA

Sadeghkhani, A., Sadeghkhani, A. & Hussein, A. (2026). Inference for Multivariate Interval Data: Bridging Frequentist and Bayesian Paradigms. Revista Colombiana de Estadística, 49(1), 161–183. https://doi.org/10.15446/rce.v49n1.119621

ACM

[1]
Sadeghkhani, A., Sadeghkhani, A. and Hussein, A. 2026. Inference for Multivariate Interval Data: Bridging Frequentist and Bayesian Paradigms. Revista Colombiana de Estadística. 49, 1 (Jan. 2026), 161–183. DOI:https://doi.org/10.15446/rce.v49n1.119621.

ACS

(1)
Sadeghkhani, A.; Sadeghkhani, A.; Hussein, A. Inference for Multivariate Interval Data: Bridging Frequentist and Bayesian Paradigms. Rev. colomb. estad. 2026, 49, 161-183.

ABNT

SADEGHKHANI, A.; SADEGHKHANI, A.; HUSSEIN, A. Inference for Multivariate Interval Data: Bridging Frequentist and Bayesian Paradigms. Revista Colombiana de Estadística, [S. l.], v. 49, n. 1, p. 161–183, 2026. DOI: 10.15446/rce.v49n1.119621. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/119621. Acesso em: 9 feb. 2026.

Chicago

Sadeghkhani, Ali, Abdolnasser Sadeghkhani, and Abdulkadir Hussein. 2026. “Inference for Multivariate Interval Data: Bridging Frequentist and Bayesian Paradigms”. Revista Colombiana De Estadística 49 (1):161-83. https://doi.org/10.15446/rce.v49n1.119621.

Harvard

Sadeghkhani, A., Sadeghkhani, A. and Hussein, A. (2026) “Inference for Multivariate Interval Data: Bridging Frequentist and Bayesian Paradigms”, Revista Colombiana de Estadística, 49(1), pp. 161–183. doi: 10.15446/rce.v49n1.119621.

IEEE

[1]
A. Sadeghkhani, A. Sadeghkhani, and A. Hussein, “Inference for Multivariate Interval Data: Bridging Frequentist and Bayesian Paradigms”, Rev. colomb. estad., vol. 49, no. 1, pp. 161–183, Jan. 2026.

MLA

Sadeghkhani, A., A. Sadeghkhani, and A. Hussein. “Inference for Multivariate Interval Data: Bridging Frequentist and Bayesian Paradigms”. Revista Colombiana de Estadística, vol. 49, no. 1, Jan. 2026, pp. 161-83, doi:10.15446/rce.v49n1.119621.

Turabian

Sadeghkhani, Ali, Abdolnasser Sadeghkhani, and Abdulkadir Hussein. “Inference for Multivariate Interval Data: Bridging Frequentist and Bayesian Paradigms”. Revista Colombiana de Estadística 49, no. 1 (January 30, 2026): 161–183. Accessed February 9, 2026. https://revistas.unal.edu.co/index.php/estad/article/view/119621.

Vancouver

1.
Sadeghkhani A, Sadeghkhani A, Hussein A. Inference for Multivariate Interval Data: Bridging Frequentist and Bayesian Paradigms. Rev. colomb. estad. [Internet]. 2026 Jan. 30 [cited 2026 Feb. 9];49(1):161-83. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/119621

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

24

Downloads

Download data is not yet available.