Published
An Improved Estimation Procedure for Population Mean in the Presence of Non-Response
Un procedimiento de estimación mejorado para la media poblacional en presencia de no respuesta
DOI:
https://doi.org/10.15446/rce.v49n1.120337Keywords:
Non–response, Bias, Mean square error, Simulation study (en)Error cuadrático medio, Estudio empírico, Falta de respuesta, Sesgo (es)
Downloads
This article proposes improved estimation procedures for the population mean in the presence of non-response using auxiliary information. Based on the Hansen–Hurwitz subsampling approach, two generalized exponential-type estimators are introduced for situations where non-response occurs either only on the study variable or on both the study and auxiliary variables. The proposed estimators incorporate tuning constants and an optimization parameter to minimize the mean square error (MSE) and generate optimum versions within each class. Expressions for the bias and MSE of the estimators are derived to the first order of approximation, and the efficiency comparisons of the proposed estimators with the existing estimators are established. A comprehensive empirical evaluation demonstrates that the proposed classes consistently provide more precise estimates than the traditional estimators. The results confirm that the proposed methodology provides an efficient alternative for mean estimation under non-response settings.
Este artículo propone procedimientos de estimación mejorados para la media poblacional en presencia de no respuesta, utilizando información auxiliar. Basándose en el enfoque de submuestreo de Hansen–Hurwitz, se introducen dos estimadores generalizados de tipo exponencial para situaciones en las que la no respuesta ocurre solo en la variable de estudio o en ambas, la variable de estudio y las variables auxiliares. Los estimadores propuestos incorporan constantes de ajuste y un parámetro de optimización para minimizar el error cuadrático medio (ECM) y generar versiones óptimas dentro de cada clase. Se derivan expresiones para el sesgo y el ECM de los estimadores hasta el primer orden de aproximación, y se establecen comparaciones de eficiencia entre los estimadores propuestos y los estimadores existentes. Una evaluación numérica exhaustiva demuestra que las clases propuestas proporcionan consistentemente estimaciones más precisas que los estimadores tradicionales. Los resultados confirman que la metodología propuesta ofrece una alternativa eficiente para la estimación de la media en contextos de no respuesta.
References
Ahmad, S., Hussain, S., Aamir, M., Khan, F., Alshahrani, M. N. & Alqawba, M. (2022). Estimation of finite population mean using dual auxiliary variable for non-response using simple random sampling. AIMS Mathematics, 7(3), 4592–4613.
Arsalan, S. M. & Shabbir, J. (2025). Estimating the mean of finite population under double sampling stratification in the presence of non-response. Austrian Journal of Statistics, 54(5), 100–120.
Audu, A., Singh, R., Khare, S. & Dauran, N. (2021). Some improved estimators for population mean under non-response. Journal of Statistics and Management Systems, 24, 573–589.
Bhushan, S. & Kumar, A. (2017). On cost efficient classes of estimators for population mean in presence of measurement errors and non-response simultaneously. International Journal of Statistics and Systems, 12(1), 93–117.
Bhushan, S. & Naqvi, N. (2015). Generalized efficient classes of estimators in presence of non-response using two auxiliary variables. Journal of Statistics and Management Systems, 18(6), 573–602.
Bhushan, S. & Pandey, A. P. (2019). An efficient estimation procedure for the population mean under non-response. Statistica, 79(4), 363–378.
Bhushan, S. & Pandey, A. P. (2023). Optimal estimation of population mean in the presence of random non-response. Thailand Statistician, 21(3), 616–630.
Bhushan, S. & Pandey, S. (2020). A cost-effective computational approach with non-response on two occasions. Communications in Statistics – Theory and Methods, 49(20), 4951–4973.
Bhushan, S. & Pandey, S. (2025). Optimal random non-response framework for mean estimation on current occasion. Communications in Statistics – Theory and Methods, 54(4), 1205–1231.
Hansen, M. H. & Hurwitz, W. N. (1946). The problem of non-response in sample surveys. Journal of the American Statistical Association, 41, 517–529.
Khare, B. & Rehman, H. (2014). A class of estimators for population mean using auxiliary information under non-response. Journal of Social and Economic Statistics, 3, 1–9.
Khare, B. & Sinha, R. (2007). Some contributions to sampling theory. In Statistical techniques in life testing, reliability, sampling theory and quality control (Vol. 1, pp. 63–171).
Khare, B. & Srivastava, S. (1993). On non-response in survey sampling. National Academy Science Letters (India), 16, 111–114.
Khare, B. & Srivastava, S. (1995). A general class of estimators for population mean in presence of non-response. Proceedings of the National Academy of Sciences, India, Section A, 65, 195–204.
Khare, B. & Srivastava, S. (1997). Estimation of population mean using auxiliary information in presence of non-response. Communications in Statistics – Theory and Methods, 26, 1779–1791.
Pandey, A., Usman, M. & Singh, G. (2021). An improved class of estimators for population mean using auxiliary information under non-response. Alexandria Engineering Journal, 60, 4461–4471.
Rao, P. S. R. S. (1986). Ratio and regression estimates under non-response. Survey Methodology, 12, 217–230.
Rather, K. U. I. & Kadilar, C. (2023). Improved estimators for the population mean under non-response. Gazi University Journal of Science, 1–1.
Shahzad, U. & Hanif, M. (2019). Some imputation based new estimators of population mean under non-response. Journal of Statistics and Management Systems, 22(8), 1381–1399.
Singh, C., Kamal, M., Singh, G. N. & Kim, J. M. (2021). Estimation of population mean using auxiliary information under non-response: A healthcare application. Risk Management and Healthcare Policy, 1595–1613.
Unal, C. & Kadilar, C. (2025). Exponential estimators under non-response cases. Sinop Universitesi Fen Bilimleri Dergisi, 10(1), 60–72.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






