Published

2025-12-01

A Multilevel Nonparametric Bayesian Model

Un Modelo Bayesiano No Paramétrico Multinivel

DOI:

https://doi.org/10.15446/rce.v48n3.122305

Keywords:

Nonparametric Bayesian model, Dirichlet process, Chinese Restaurant Process, Clustering, Linear regression. (en)
Modelo Bayesiano no paramétrico, Proceso de Dirichlet, Proceso del Restaurante Chino, Agrupamiento, Regresión lineal. (es)

Downloads

Authors

  • Laura Camila Cruz De Paula Universidad Nacional de Colombia
  • Juan Camilo Sosa Martinez Universidad Nacional de Colombia

This work presents the development of a multilevel Bayesian nonparametric model that allows for the estimation of linear relationships in heterogeneous data sets, while simultaneously identifying clusters without the need to specify the number of groups in advance. The study includes the mathematical development of the model using the Chinese Restaurant Process and the implementation of algorithms for its fitting. The results obtained from real data show that the model performs well in both clustering data and characterizing linear relationships, achieving results comparable and even better to those obtained by traditional parametric methods.

Este trabajo presenta el desarrollo de un modelo Bayesiano no paramétrico multinivel diseñado para estimar relaciones lineales en conjuntos de datos heterogéneos, mientras identifica simultáneamente conglomerados sin requerir la especificación previa del número de grupos. El estudio incluye la formulación matemática del modelo utilizando el Proceso del Restaurante Chino, así como la implementación de algoritmos para su ajuste. Los resultados obtenidos con datos reales muestran que el modelo tiene un buen desempeño tanto en la agrupación de los datos como en la caracterización de las relaciones lineales, alcanzando resultados comparables e incluso superiores a los obtenidos mediante métodos paramétricos tradicionales.

References

Barnes III, T. G., Jefferys, W., Berger, J., Mueller, P. J., Orr, K. & Rodriguez, R. (2003), `A Bayesian analysis of the cepheid distance scale', The Astrophysical Journal 592(1), 539.

Bishop, C. M. (2006), Pattern Recognition and Machine Learning, Information Science and Statistics, Springer, New York.

Blackwell, D. & MacQueen, J. B. (1973), `Ferguson distributions via urn schemes', Annals of Statistics 1(2), 353-355.

Blei, D. M. (2007), `Lecture 1: Bayesian nonparametrics', Lecture notes for COS 597C: Bayesian Nonparametrics. Scribes: Peter Frazier and Indraneel Mukherjee.

Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. (2017), `Variational inference: A review for statisticians', Journal of the American statistical Association 112(518), 859-877.

Bouchard-Côté, A. (2011), Statistical Modeling with Stochastic Processes, PhD thesis, University of British Columbia, Vancouver, Canada.

Clyde, M. & George, E. I. (2000), `Flexible empirical Bayes estimation for wavelets', Journal of the Royal Statistical Society Series B: Statistical Methodology 62(4), 681-698.

Dunson, D. B. (2010), `Nonparametric Bayes applications to biostatistics', Bayesian nonparametrics 28, 223-273.

Ewens, W. J. (1990), Population genetics theory-the past and the future, in `Mathematical and statistical developments of evolutionary theory', Springer, pp. 177-227.

Ferguson, T. S. (1973), `A Bayesian analysis of some nonparametric problems', The annals of statistics pp. 209-230.

Foti, N. J. & Williamson, S. A. (2013), `A survey of non-exchangeable priors for Bayesian nonparametric models', IEEE transactions on pattern analysis and machine intelligence 37(2), 359-371.

Frigyik, B. A., Kapila, A. & Gupta, M. R. (2010), Introduction to the Dirichlet distribution and related processes, UWEE Technical Report UWEETR-2010- 0006, University of Washington, Department of Electrical Engineering.

Gamerman, D. & Lopes, H. F. (2006), Markov chain Monte Carlo: stochastic simulation for Bayesian inference, Chapman and Hall/CRC.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. & Rubin, D. B. (2013), Bayesian Data Analysis, 3 edn, Chapman and Hall/CRC, Boca Raton, FL.

Hanson, T. & Johnson, W. O. (2002), `Modeling regression error with a mixture of Pólia trees', Journal of the American Statistical Association 97(460), 1020-1033.

Hanson, T. & Johnson, W. O. (2004), `A Bayesian semiparametric aft model for interval-censored data', Journal of Computational and Graphical Statistics 13(2), 341-361.

Hoff, P. D. (2009), A first course in Bayesian statistical methods, Vol. 580, Springer.

Jara, A. (2017), `Theory and computations for the Dirichlet process and related models: An overview', International Journal of Approximate Reasoning 81, 128-146.

Kamper, H. (2013), `Gibbs sampling for fitting finite and infinite Gaussian mixture models', Technical report.

Kass, R. E. & Wasserman, L. (1995), `A reference Bayesian test for nested hypotheses and its relationship to the schwarz criterion', Journal of the American statistical association 90(431), 928-934.

MacEachern, S. N. (1999), Dependent nonparametric processes, in `ASA proceedings of the section on Bayesian statistical science', Vol. 1, Alexandria, VA, pp. 50-55.

Müeller, P., Quintana, F. A. & Page, G. (2018), `Nonparametric Bayesian inference in applications', Statistical Methods & Applications 27(2), 175-206.

Müller, P., Erkanli, A. & West, M. (1996), `Bayesian curve fitting using multivariate normal mixtures', Biometrika 83(1), 67-79.

Müller, P. & Mitra, R. (2013), `Bayesian nonparametric inference why and how', Bayesian analysis (Online) 8(2), 10-1214.

Müller, P., Quintana, F. A., Jara, A. & Hanson, T. (2015), Bayesian nonparametric data analysis, Vol. 1, Springer.

Murphy, K. P. (2012), Machine learning: a probabilistic perspective, MIT press.

Navarro, D. J. & Perfors, A. (2023), The chinese restaurant process. Lecture notes,

University of Adelaide.

Orhan, E. (2012), `Bayesian statistics: Dirichlet processes', Lecture notes. Unpublished manuscript.

Polson, N. G. & Scott, J. G. (2011), `On the half-cauchy prior for a global scale parameter'.

Quintana, F. A., Müller, P., Jara, A. & MacEachern, S. N. (2022), `The dependent dirichlet process and related models', Statistical Science 37(1), 24-41.

Schörgendorfer, A., Branscum, A. J. & Hanson, T. E. (2013), `A Bayesian goodness of t test and semiparametric generalization of logistic regression with measurement data', Biometrics 69(2), 508-519.

Sosa, J. & Aristizabal, J.-P. (2022), `Some developments in Bayesian hierarchical linear regression modeling', Revista Colombiana de Estadística 45(2), 231-255.

Teh, Y. W. (2010), Dirichlet processes, in C. Sammut & G. I. Webb, eds, `Encyclopedia of Machine Learning', Springer, pp. 280 287. https://www.stats.ox ac.uk/~teh/research/npBayes/Teh2010a.pdf

Theodoridis, S. (2020), Machine Learning: A Bayesian and Optimization Perspective, second edn, Academic Press.

Tibshirani, R. (1996), `Regression shrinkage and selection via the lasso', Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267-288.

Walker, S. & Mallick, B. K. (1999), `A Bayesian semiparametric accelerated failure time model', Biometrics 55(2), 477-483.

West, M. (1992), Hyperparameter estimation in dirichlet process mixture models, Discussion Paper 92-A03, Institute of Statistics and Decision Sciences, Duke University.

Williams, C. K. & Rasmussen, C. E. (2006), Gaussian processes for machine learning, Vol. 2, MIT press Cambridge, MA.

Xu, Y., Müller, P., Wahed, A. S. & Thall, P. F. (2016), `Bayesian nonparametric estimation for dynamic treatment regimes with sequential transition times', Journal of the American Statistical Association 111(515), 921-950.

Xuan, J., Lu, J. & Zhang, G. (2019), `A survey on Bayesian nonparametric learning', ACM Computing Surveys (CSUR) 52(1), 1-36.

How to Cite

APA

Cruz De Paula, L. C. & Sosa Martinez, J. C. (2025). A Multilevel Nonparametric Bayesian Model. Revista Colombiana de Estadística, 48(3), 269–299. https://doi.org/10.15446/rce.v48n3.122305

ACM

[1]
Cruz De Paula, L.C. and Sosa Martinez, J.C. 2025. A Multilevel Nonparametric Bayesian Model. Revista Colombiana de Estadística. 48, 3 (Dec. 2025), 269–299. DOI:https://doi.org/10.15446/rce.v48n3.122305.

ACS

(1)
Cruz De Paula, L. C.; Sosa Martinez, J. C. A Multilevel Nonparametric Bayesian Model. Rev. colomb. estad. 2025, 48, 269-299.

ABNT

CRUZ DE PAULA, L. C.; SOSA MARTINEZ, J. C. A Multilevel Nonparametric Bayesian Model. Revista Colombiana de Estadística, [S. l.], v. 48, n. 3, p. 269–299, 2025. DOI: 10.15446/rce.v48n3.122305. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/122305. Acesso em: 24 dec. 2025.

Chicago

Cruz De Paula, Laura Camila, and Juan Camilo Sosa Martinez. 2025. “A Multilevel Nonparametric Bayesian Model”. Revista Colombiana De Estadística 48 (3):269-99. https://doi.org/10.15446/rce.v48n3.122305.

Harvard

Cruz De Paula, L. C. and Sosa Martinez, J. C. (2025) “A Multilevel Nonparametric Bayesian Model”, Revista Colombiana de Estadística, 48(3), pp. 269–299. doi: 10.15446/rce.v48n3.122305.

IEEE

[1]
L. C. Cruz De Paula and J. C. Sosa Martinez, “A Multilevel Nonparametric Bayesian Model”, Rev. colomb. estad., vol. 48, no. 3, pp. 269–299, Dec. 2025.

MLA

Cruz De Paula, L. C., and J. C. Sosa Martinez. “A Multilevel Nonparametric Bayesian Model”. Revista Colombiana de Estadística, vol. 48, no. 3, Dec. 2025, pp. 269-9, doi:10.15446/rce.v48n3.122305.

Turabian

Cruz De Paula, Laura Camila, and Juan Camilo Sosa Martinez. “A Multilevel Nonparametric Bayesian Model”. Revista Colombiana de Estadística 48, no. 3 (December 22, 2025): 269–299. Accessed December 24, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/122305.

Vancouver

1.
Cruz De Paula LC, Sosa Martinez JC. A Multilevel Nonparametric Bayesian Model. Rev. colomb. estad. [Internet]. 2025 Dec. 22 [cited 2025 Dec. 24];48(3):269-9. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/122305

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

30

Downloads

Download data is not yet available.