Published
Conditional Mode: An Approach via Smoothed Quantile Regression
Moda condicional: un enfoque vía regresión cuantílica suavizada
DOI:
https://doi.org/10.15446/rce.v48n3.122634Keywords:
Mode regression, Convolution. (en)Regresión modal, Convolución. (es)
Downloads
Recently, it has been proposed to estimate the conditional mode of a response, given a vector of covariates, using a computationally scalable estimator derived from the linear quantile regression model. Alternatively, we propose to estimate the conditional mode by maximizing a smoothed conditional density estimator. This approach offers at least two benefits: computational efficiency and good asymptotic behavior which, in particular, bypasses the curse of dimensionality.
Recientemente, se ha propuesto estimar la moda condicional de una respuesta, dado un vector de covariables, mediante un estimador computacionalmente escalable derivado del modelo de regresión cuantílica lineal. Como alternativa, proponemos estimar la moda condicional maximizando un estimador de densidad condicional suavizada. Este enfoque ofrece al menos dos ventajas: eficiencia computacional y un buen comportamiento asintótico que, en particular, evita la maldición de la dimensionalidad.
References
Bamford, S. P., Rojas, A. L., Nichol, R. C., Miller, C. J., Wasserman, L., Genovese, C. R. & Freeman, P. E. (2008), `Revealing components of the galaxy population through nonparametric techniques', Monthly Notices of the Royal Astronomical Society 391, 607.
Bassett, G. & Koenker, R. (1982), `An empirical quantile function for linear models with iid errors', Journal of the American Statistical Association 77(378), 407-415.
Chacón, J. E. (2020), `The modal age of statistics', International Statistical Review 88(1), 122-141.
Chen, Y.-C., Genovese, C. R., Tibshirani, R. J. & Wasserman, L. (2016),`Nonparametric modal regression', The Annals of Statistics 44(2), 489-514.
Feng, Y., Fan, J. & Suykens, J. (2020), `A statistical learning approach to modal regression', Journal of Machine Learning Research 21(2), 1-35.
Fernandes, M., Guerre, E. & Horta, E. (2021), `Smoothing quantile regressions', Journal of Business and Economic Statistics 39(1), 338-357.
Finn, E. S. & Horta, E. (2024), Convolution mode regression, arXiv preprint 2412.05736, arXiv.
He, X., Pan, X., Tan, K. M. & Zhou, W.-X. (2020), Convolution-type Smoothed Quantile Regression. R package version 1.0.2.
Kaya, H. & Tufekci, P. (2012), Local and global learning methods for predicting power of a combined gas and steam turbine, in `Proceedings of the International Conference on Emerging Trends in Computer and Electronics Engineering (ICETCEE 2012)', pp. 13-18.
Koenker, R. & Bassett, G. (1978), `Regression quantiles', Econometrica 46(1), 33-50.
Lee, M.-J. (1989), `Mode regression', Journal of Econometrics 42(3), 337-349.
Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J. & Wasserman, L. (2018), `Distribution-free predictive inference for regression', Journal of the American Statistical Association 113(523), 1094-1111.
Marsden, J. E. & Tromba, A. (2012), Vector Calculus, 6 edn, W. H. Freeman, New York, NY.
Nadaraya, E. A. (1964), `Some new estimates for distribution functions', Theory of Probability and Its Applications 9(3), 497-500.
Newey, W. K. & McFadden, D. (1994), Large sample estimation and hypothesis testing, in R. F. Engle & D. L. McFadden, eds, `Handbook of Econometrics', Vol. 4, Elsevier, pp. 2111-2245.
Ota, H., Kato, K. & Hara, S. (2019), `Quantile regression approach to conditional mode estimation', Electronic Journal of Statistics 13, 3120-3160.
R Core Team (2021), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.
Silverman, B. W. (1986), Density Estimation for Statistics and Data Analysis, Chapman and Hall, London.
Tufekci, P. (2014), `Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods', International Journal of Electrical Power and Energy Systems 60, 126-140.
Ullah, A., Wang, T. & Yao, W. (2021), `Modal regression for fixed effects panel data', Empirical Economics 60(1), 261 308.
Wang, X., Chen, H., Cai, W., Shen, D. & Huang, H. (2017), Regularized modal regression with applications in cognitive impairment prediction, in `Advances in Neural Information Processing Systems', Vol. 30, Curran Associates.
Yao, W. & Li, L. (2014), `A new regression model: Modal linear regression', Scandinavian Journal of Statistics 41(3), 656 671. Zhang, T., Kato, K. & Ruppert, D. (2021), `Bootstrap inference for quantile-based modal regression'.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






