Published
Advances in Bayesian Modeling: Applications and Methods
Avances en modelamiento bayesiano: aplicaciones y métodos
DOI:
https://doi.org/10.15446/rce.v48n3.122850Keywords:
Bayesian inference, Markov chain Monte Carlo, Variational Approximation, Hierarchical modeling, Spatial modeling, Dirichlet process mixtures, Predictive analysis, Model evaluation. (en)Inferencia bayesiana, Cadenas de Markov de Monte Carlo, Aproximación variacional, Modelamiento jerárquico, Modelamiento espacial, Mezclas de procesos de Dirichlet, Análisis predictivo, Evaluación de modelos. (es)
Downloads
This paper explores the versatility and depth of Bayesian modeling by presenting a comprehensive range of applications and methods, combining Markov chain Monte Carlo techniques and variational approximations. Covering topics such as hierarchical modeling, spatial modeling, higher-order Markov chains, and Bayesian nonparametrics, the study emphasizes practical implementations across diverse fields, including oceanography, climatology, epidemiology, and astronomy. The aim is to bridge theoretical underpinnings with real-world applications, illustrating the formulation of Bayesian models, elicitation of priors, computational strategies, and posterior and predictive analyses. By leveraging different computational methods, this paper provides insights into model fitting, goodness-of-fit evaluation, and predictive accuracy, addressing computational efficiency and methodological challenges across various datasets and domains.
Este artículo explora la versatilidad y profundidad del modelado Bayesiano mediante la presentación de un amplio conjunto de aplicaciones y métodos, combinando técnicas de cadenas de Markov de Monte Carlo y aproximaciones variacionales. Al abarcar temas como modelamiento jerárquico, modelamiento espacial, cadenas de Markov de orden superior y métodos Bayesianos no paramétricos, el estudio enfatiza implementaciones prácticas en campos diversos, incluyendo oceanografía, climatología, epidemiología y astronomía. El objetivo es tender un puente entre los fundamentos teóricos y las aplicaciones del mundo real, ilustrando la formulación de modelos Bayesianos, la elicitación de distribuciones previas, las estrategias computacionales y los análisis posteriores y predictivos. Al aprovechar diferentes métodos computacionales, este trabajo ofrece una perspectiva sobre el ajuste de modelos, la evaluación de la bondad de ajuste y la precisión predictiva, abordando la eficiencia computacional y los desafíos metodológicos en distintos conjuntos de datos y dominios.
References
Albert, J. H. & Chib, S. (1993), `Bayesian analysis of binary and polychotomous response data', Journal of the American Statistical Association 88(422), 669-679.
Banerjee, S., Carlin, B. P. & Gelfand, A. E. (2015), Hierarchical Modeling and Analysis for Spatial Data, 2nd edn, CRC Press, Boca Raton, FL.
Berchtold, A. & Raftery, A. E. (2002), `The mixture transition distribution model for high-order markov chains and non-gaussian time series', Statistical Science pp. 328-356.
Bernardo, J. M. & Smith, A. F. (2009), Bayesian theory, Vol. 405, John Wiley & Sons.
Bishop, C. M. (2006), Pattern Recognition and Machine Learning, Springer, New York, NY.
Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. (2017), `Variational inference: A review for statisticians', Journal of the American Statistical Association 112(518), 859-877.
Cox, R. T. (1946), `Probability, frequency and reasonable expectation', American journal of physics 14(1), 1-13.
De Finetti, B. (1970), `Logical foundations and measurement of subjective probability', Acta Psychologica 34, 129-145.
Ferguson, T. S. (1973), `A bayesian analysis of some nonparametric problems', The annals of statistics pp. 209-230.
Ferguson, T. S. (1974), `Prior distributions on spaces of probability measures', The annals of statistics pp. 615-629.
Gamerman, D. & Lopes, H. F. (2006), Markov chain Monte Carlo: stochastic simulation for Bayesian inference, Chapman and Hall/CRC.
Gelfand, A. E. & Ghosh, S. K. (1998), `Model choice: a minimum posterior predictive loss approach', Biometrika 85(1), 1-11.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. & Rubin, D. B. (2013), Bayesian Data Analysis, 3rd edn, Chapman and Hall/CRC, Boca Raton, FL.
Ghosh, J. K., Delampady, M. & Samanta, T. (2007), An introduction to Bayesian analysis: theory and methods, Springer Science & Business Media.
Ghosh, M. (2011), `Objective priors: An introduction for frequentists', Statistical Science 26(2), 187-202.
Golub, G. H. & Van Loan, C. F. (2013), Matrix computations, JHU press.
Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. (2013), `Stochastic variational inference', Journal of Machine Learning Research 14, 1303-1347.
Joos, F., Plattner, G.-K., Stocker, T. F., Marchal, O. & Schmittner, A. (1999), `Global warming and marine carbon cycle feedbacks on future atmospheric co2', Science 284(5413), 464-467.
Jordan, M. I., Ghahramani, Z., Jaakkola, T. S. & Saul, L. K. (1999), `An introduction to variational methods for graphical models', Machine Learning 37(2), 183-233.
Koller, D. & Friedman, N. (2009), Probabilistic Graphical Models: Principles and Techniques, MIT Press, Cambridge, MA.
Müeller, P., Quintana, F. A. & Page, G. (2018), `Nonparametric bayesian inference in applications', Statistical Methods & Applications 27, 175-206.
Müller, P. & Mitra, R. (2013), `Bayesian nonparametric inference-why and how', Bayesian analysis (Online) 8(2).
Nykjaer, L. (2009), `Mediterranean sea surface warming 1985-2006', Climate Research 39(1), 11-17.
Raftery, A. E. (1985), `A model for high-order markov chains', Journal of the Royal Statistical Society. Series B (Methodological) pp. 528-539.
Richardson, S. & Green, P. J. (1997), `On bayesian analysis of mixtures with an unknown number of components (with discussion)', Journal of the Royal Statistical Society: series B (statistical methodology) 59(4), 731-792.
Rodriguez, A. & Müller, P. (2013), Nonparametric bayesian inference, in `NSFCBMS Regional Conference Series in Probability and Statistics', Vol. 9, JSTOR, pp. i-110.
Sarmiento, L. (2000), `Water balance and soil loss under long fallow agriculture in the venezuelan andes', Mountain Research and Development 20(3), 246-253.
Savage, L. J. (1972), The foundations of statistics, Courier Corporation.
Scott, S. L. (2002), `Bayesian methods for hidden markov models', Journal of the American Statistical Association 97(457).
Sethuraman, J. (1994), `A constructive definition of dirichlet priors', Statistica sinica pp. 639-650.
Venables, W. N. & Ripley, B. D. (2002), Modern Applied Statistics with S, fourth edn, Springer, New York
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






