Published

2025-12-01

Advances in Bayesian Modeling: Applications and Methods

Avances en modelamiento bayesiano: aplicaciones y métodos

DOI:

https://doi.org/10.15446/rce.v48n3.122850

Keywords:

Bayesian inference, Markov chain Monte Carlo, Variational Approximation, Hierarchical modeling, Spatial modeling, Dirichlet process mixtures, Predictive analysis, Model evaluation. (en)
Inferencia bayesiana, Cadenas de Markov de Monte Carlo, Aproximación variacional, Modelamiento jerárquico, Modelamiento espacial, Mezclas de procesos de Dirichlet, Análisis predictivo, Evaluación de modelos. (es)

Downloads

Authors

  • Yifei Yan University of California
  • Juan Sosa Universidad Nacional de Colombia
  • Carlos Alberto Martínez Universidad Nacional de Colombia

This paper explores the versatility and depth of Bayesian modeling by presenting a comprehensive range of applications and methods, combining Markov chain Monte Carlo techniques and variational approximations. Covering topics such as hierarchical modeling, spatial modeling, higher-order Markov chains, and Bayesian nonparametrics, the study emphasizes practical implementations across diverse fields, including oceanography, climatology, epidemiology, and astronomy. The aim is to bridge theoretical underpinnings with real-world applications, illustrating the formulation of Bayesian models, elicitation of priors, computational strategies, and posterior and predictive analyses. By leveraging different computational methods, this paper provides insights into model fitting, goodness-of-fit evaluation, and predictive accuracy, addressing computational efficiency and methodological challenges across various datasets and domains.

Este artículo explora la versatilidad y profundidad del modelado Bayesiano mediante la presentación de un amplio conjunto de aplicaciones y métodos, combinando técnicas de cadenas de Markov de Monte Carlo y aproximaciones variacionales. Al abarcar temas como modelamiento jerárquico, modelamiento espacial, cadenas de Markov de orden superior y métodos Bayesianos no paramétricos, el estudio enfatiza implementaciones prácticas en campos diversos, incluyendo oceanografía, climatología, epidemiología y astronomía. El objetivo es tender un puente entre los fundamentos teóricos y las aplicaciones del mundo real, ilustrando la formulación de modelos Bayesianos, la elicitación de distribuciones previas, las estrategias computacionales y los análisis posteriores y predictivos. Al aprovechar diferentes métodos computacionales, este trabajo ofrece una perspectiva sobre el ajuste de modelos, la evaluación de la bondad de ajuste y la precisión predictiva, abordando la eficiencia computacional y los desafíos metodológicos en distintos conjuntos de datos y dominios.

References

Albert, J. H. & Chib, S. (1993), `Bayesian analysis of binary and polychotomous response data', Journal of the American Statistical Association 88(422), 669-679.

Banerjee, S., Carlin, B. P. & Gelfand, A. E. (2015), Hierarchical Modeling and Analysis for Spatial Data, 2nd edn, CRC Press, Boca Raton, FL.

Berchtold, A. & Raftery, A. E. (2002), `The mixture transition distribution model for high-order markov chains and non-gaussian time series', Statistical Science pp. 328-356.

Bernardo, J. M. & Smith, A. F. (2009), Bayesian theory, Vol. 405, John Wiley & Sons.

Bishop, C. M. (2006), Pattern Recognition and Machine Learning, Springer, New York, NY.

Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. (2017), `Variational inference: A review for statisticians', Journal of the American Statistical Association 112(518), 859-877.

Cox, R. T. (1946), `Probability, frequency and reasonable expectation', American journal of physics 14(1), 1-13.

De Finetti, B. (1970), `Logical foundations and measurement of subjective probability', Acta Psychologica 34, 129-145.

Ferguson, T. S. (1973), `A bayesian analysis of some nonparametric problems', The annals of statistics pp. 209-230.

Ferguson, T. S. (1974), `Prior distributions on spaces of probability measures', The annals of statistics pp. 615-629.

Gamerman, D. & Lopes, H. F. (2006), Markov chain Monte Carlo: stochastic simulation for Bayesian inference, Chapman and Hall/CRC.

Gelfand, A. E. & Ghosh, S. K. (1998), `Model choice: a minimum posterior predictive loss approach', Biometrika 85(1), 1-11.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. & Rubin, D. B. (2013), Bayesian Data Analysis, 3rd edn, Chapman and Hall/CRC, Boca Raton, FL.

Ghosh, J. K., Delampady, M. & Samanta, T. (2007), An introduction to Bayesian analysis: theory and methods, Springer Science & Business Media.

Ghosh, M. (2011), `Objective priors: An introduction for frequentists', Statistical Science 26(2), 187-202.

Golub, G. H. & Van Loan, C. F. (2013), Matrix computations, JHU press.

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. (2013), `Stochastic variational inference', Journal of Machine Learning Research 14, 1303-1347.

Joos, F., Plattner, G.-K., Stocker, T. F., Marchal, O. & Schmittner, A. (1999), `Global warming and marine carbon cycle feedbacks on future atmospheric co2', Science 284(5413), 464-467.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S. & Saul, L. K. (1999), `An introduction to variational methods for graphical models', Machine Learning 37(2), 183-233.

Koller, D. & Friedman, N. (2009), Probabilistic Graphical Models: Principles and Techniques, MIT Press, Cambridge, MA.

Müeller, P., Quintana, F. A. & Page, G. (2018), `Nonparametric bayesian inference in applications', Statistical Methods & Applications 27, 175-206.

Müller, P. & Mitra, R. (2013), `Bayesian nonparametric inference-why and how', Bayesian analysis (Online) 8(2).

Nykjaer, L. (2009), `Mediterranean sea surface warming 1985-2006', Climate Research 39(1), 11-17.

Raftery, A. E. (1985), `A model for high-order markov chains', Journal of the Royal Statistical Society. Series B (Methodological) pp. 528-539.

Richardson, S. & Green, P. J. (1997), `On bayesian analysis of mixtures with an unknown number of components (with discussion)', Journal of the Royal Statistical Society: series B (statistical methodology) 59(4), 731-792.

Rodriguez, A. & Müller, P. (2013), Nonparametric bayesian inference, in `NSFCBMS Regional Conference Series in Probability and Statistics', Vol. 9, JSTOR, pp. i-110.

Sarmiento, L. (2000), `Water balance and soil loss under long fallow agriculture in the venezuelan andes', Mountain Research and Development 20(3), 246-253.

Savage, L. J. (1972), The foundations of statistics, Courier Corporation.

Scott, S. L. (2002), `Bayesian methods for hidden markov models', Journal of the American Statistical Association 97(457).

Sethuraman, J. (1994), `A constructive definition of dirichlet priors', Statistica sinica pp. 639-650.

Venables, W. N. & Ripley, B. D. (2002), Modern Applied Statistics with S, fourth edn, Springer, New York

How to Cite

APA

Yan, Y., Sosa, J. & Martínez, C. A. (2025). Advances in Bayesian Modeling: Applications and Methods. Revista Colombiana de Estadística, 48(3), 349–395. https://doi.org/10.15446/rce.v48n3.122850

ACM

[1]
Yan, Y., Sosa, J. and Martínez, C.A. 2025. Advances in Bayesian Modeling: Applications and Methods. Revista Colombiana de Estadística. 48, 3 (Dec. 2025), 349–395. DOI:https://doi.org/10.15446/rce.v48n3.122850.

ACS

(1)
Yan, Y.; Sosa, J.; Martínez, C. A. Advances in Bayesian Modeling: Applications and Methods. Rev. colomb. estad. 2025, 48, 349-395.

ABNT

YAN, Y.; SOSA, J.; MARTÍNEZ, C. A. Advances in Bayesian Modeling: Applications and Methods. Revista Colombiana de Estadística, [S. l.], v. 48, n. 3, p. 349–395, 2025. DOI: 10.15446/rce.v48n3.122850. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/122850. Acesso em: 24 dec. 2025.

Chicago

Yan, Yifei, Juan Sosa, and Carlos Alberto Martínez. 2025. “Advances in Bayesian Modeling: Applications and Methods”. Revista Colombiana De Estadística 48 (3):349-95. https://doi.org/10.15446/rce.v48n3.122850.

Harvard

Yan, Y., Sosa, J. and Martínez, C. A. (2025) “Advances in Bayesian Modeling: Applications and Methods”, Revista Colombiana de Estadística, 48(3), pp. 349–395. doi: 10.15446/rce.v48n3.122850.

IEEE

[1]
Y. Yan, J. Sosa, and C. A. Martínez, “Advances in Bayesian Modeling: Applications and Methods”, Rev. colomb. estad., vol. 48, no. 3, pp. 349–395, Dec. 2025.

MLA

Yan, Y., J. Sosa, and C. A. Martínez. “Advances in Bayesian Modeling: Applications and Methods”. Revista Colombiana de Estadística, vol. 48, no. 3, Dec. 2025, pp. 349-95, doi:10.15446/rce.v48n3.122850.

Turabian

Yan, Yifei, Juan Sosa, and Carlos Alberto Martínez. “Advances in Bayesian Modeling: Applications and Methods”. Revista Colombiana de Estadística 48, no. 3 (December 22, 2025): 349–395. Accessed December 24, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/122850.

Vancouver

1.
Yan Y, Sosa J, Martínez CA. Advances in Bayesian Modeling: Applications and Methods. Rev. colomb. estad. [Internet]. 2025 Dec. 22 [cited 2025 Dec. 24];48(3):349-95. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/122850

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

29

Downloads

Download data is not yet available.