Published
A Bayesian Approach for Unit-Gamma Regression through Reparameterization in the Mean and Quantiles
Un enfoque bayesiano para la regresión gamma unitaria mediante reparametrización en la media y los cuantiles
DOI:
https://doi.org/10.15446/rce.v48n3.123477Keywords:
Bayesian unit-gamma, Quantile regression, Bayesian inference, Bounded data. (en)Gamma unitaria bayesiana, Regresión cuantílica, Inferencia bayesiana, Datos acotados. (es)
Downloads
In recent years, considerable attention has been devoted to statistical models designed for continuous doubly bounded dependent variables, defined on a finite interval (a, b) with known limits satisfying −∞ < a < b < ∞. A predominant focus, however, has been on the special case in which the response is restricted to the standard unit interval, namely (0, 1). In this context, we introduce a new class of quantile regression models based on the unit-gamma distribution, along with a mean-based model. For inference, we adopt a Bayesian framework, employing Markov Chain Monte Carlo (MCMC) stochastic simulation algorithms. We conducted extensive simulations to verify the computational implementation and assess the properties of the Bayesian estimators. All analyses were carried out using the nimble package in R, which provides a flexible environment for building and fitting Bayesian hierarchical models. Our results suggest that the proposed Bayesian approach provides unbiased and consistent estimators for all model parameters. Additionally, we perform a detailed model fit assessment, comparing the proposed models with several established alternatives, and conduct an influence analysis to identify potential outliers or influential data points. Finally, we apply the proposed models to a real-world dataset, demonstrating their practical utility and systematically comparing their performance with that of existing models commonly used in the literature.
En los últimos años, se ha dedicado una atención considerable al desarrollo de modelos estadísticos diseñados para variables dependientes continuas doblemente acotadas, definidas en un intervalo nito (a, b) con límites conocidos que satisfacen −∞ < a < b < ∞. Sin embargo, el enfoque predominante ha sido el caso especial en el cual la variable respuesta está restringida al intervalo unitario estándar (0, 1). En este contexto, presentamos una nueva clase de modelos de regresión cuantílica basados en la distribución gamma unitaria, junto con un modelo basado en la media. Para la inferencia, adoptamos un enfoque bayesiano, empleando algoritmos de simulación estocástica de tipo Markov Chain Monte Carlo (MCMC). Se realizaron extensas simulaciones para vericar la implementación computacional y evaluar las propiedades de los estimadores bayesianos. Todos los análisis se llevaron a cabo utilizando el paquete nimble en R, que ofrece un entorno flexible para la construcción y el ajuste de modelos jerárquicos bayesianos. Nuestros resultados indican que el enfoque bayesiano propuesto proporciona estimadores insesgados y consistentes para todos los parámetros del modelo. Además, se realizó una evaluación detallada del ajuste del modelo, comparando las propuestas con varias alternativas establecidas, y un análisis de influencia para identificar posibles valores atípicos o puntos de datos influyentes. Finalmente, aplicamos los modelos propuestos a un conjunto de datos reales, demostrando su utilidad práctica y comparando sistemáticamente su desempeño con el de modelos existentes comúnmente utilizados en la literatura.
References
Altun, E. (2021), `The log-Weighted exponential regression model: alternative to the Beta regression model', Communications in Statistics-Theory and Methods 50(10), 2306-2321.
Atkinson, A. C. (1985), Plots, transformation, and regression: an introduction to graphical methods of diagnostic regression analysis, Clarendon Press, Oxford.
Barrientos, A. F., Jara, A. & Quintana, F. A. (2017), `Fully nonparametric regression for bounded data using dependent Bernstein polynomials', Journal of the American Statistical Association 112(518), 806-825.
Bayes, C. L., Bazán Guzmán, J. L. & Castro, M. d. (2017), `A quantile parametric mixed regression model for bounded response variables', Statistics and its interface 10(3), 483-493.
Bayes, C. L., Bazán, J. L. & García, C. (2012), `A New Robust Regression Model for Proportions', Bayesian Analysis 7(4), 841-866.
Beraha, M., Falco, D. & Guglielmi, A. (2021), `JAGS, NIMBLE, Stan: a detailed comparison among Bayesian MCMC software', arXiv:2107.09357 [stat.CO]. https://arxiv.org/abs/2107.09357
Bernardo, J. M. & Smith, A. F. M. (1994), Bayesian Theory, Wiley.
Bourguignon, M. & Gallardo, D. I. (2025), `A general and unified parameterization of the Beta distribution: A flexible and robust Beta regression model', Statistica Neerlandica 79(2), 1-19.
Branscum, A. J., Johnson, W. O. & Thurmond, M. C. (2007), `Bayesian Beta regression: applications to household expenditure data and genetic distance between foot-and-mouth disease viruses', Australian & New Zealand Journal of Statistics 49(3), 287-301.
Canterle, D. R. & Bayer, F. M. (2019), `Variable dispersion Beta regressions with parametric link functions', Statistical Papers 60(5), 1541-1567.
Castro, M., Azevedo, C. & Nobre, J. (2024), `A robust quantile regression for bounded variables based on the Kumaraswamy rectangular distribution', Statistics and Computing 34(2), 74.
Chesneau, C. (2025), `Introducing a new unit gamma distribution: properties and applications', European Journal of Statistics 5, 1-25.
Cho, H., Ibrahim, J. G., Sinha, D. & Zhu, H. (2009), `Bayesian case influence diagnostics for survival models', Biometrics 65(1), 116-124.
Christensen, R., Johnson, W., Branscum, A. & Hanson, T. E. (2011), Bayesian ideas and data analysis: an introduction for scientists and statisticians, Chapman and Hall, New York.
Cox, D. R. & Snell, E. J. (1968), `A general de nition of residuals', Journal of the Royal Statistical Society: Series B (Methodological) 30, 248-275.
de Valpine, P., Paciorek, C., Turek, D., Michaud, N., Anderson-Bergman, C., Obermeyer, F., Wehrhahn Cortes, C., Rodríguez, A., Temple Lang, D. & Paganin, S. (2024), NIMBLE user manual, NIMBLE Development Team. R package manual, version 1.3.0. https://r-nimble.org
de Valpine, P., Turek, D., Paciorek, C., Anderson-Bergman, C., Lang, D. T. & Bodik, R. (2017), `Programming with models: writing statistical algorithms for general model structures with NIMBLE', Journal of Computational and Graphical Statistics 26, 403-413.
Dunn, P. K. & Smyth, G. K. (1996), `Randomized quantile residuals', Journal of Computational and Graphical Statistics 5(3), 236-244.
El-Awady, M. M. & Ramadan, A. T. (2025), `Unit Rayleigh half-normal distribution: Bayesian and Non-Bayesian inference, regression model for bounded response data and application', Annals of Data Science pp. 1-34.
Ferrari, S. & Cribari-Neto, F. (2004), `Beta regression for modelling rates and proportions', Journal of applied statistics 31(7), 799-815.
Figueroa-Zúñiga, J. I., Arellano-Valle, R. B. & Ferrari, S. L. (2013), `Mixed Beta regression: A Bayesian perspective', Computational Statistics & Data Analysis 61, 137-147.
Freitas, J. V. B., Nobre, J. S., Espinheira, P. L. & Rêgo, L. C. (2023), `Unit gamma regression models for correlated bounded data', Brazilian Journal of Probability and Statistics 37(4), 693-719.
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. (2019), `Visualization in Bayesian workflow', Journal of the Royal Statistical Society: Series A (Statistics in Society) 182(2), 389-402.
Geisser, S. & Eddy, W. F. (1979), `A predictive approach to model selection', Journal of the American Statistical Association 74(365), 153-160.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. & Rubin, D. B. (2013), Bayesian Data Analysis, 3 edn, CRC Press.
Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (1995), Bayesian data analysis, Chapman and Hall/CRC.
Gelman, A., Hwang, J. & Vehtari, A. (2014), `Understanding predictive information criteria for Bayesian models', Statistics and computing 24(6), 997-1016.
Gelman, A., Meng, X.-L. & Stern, H. (1996), `Posterior predictive assessment of model fitness via realized discrepancies', Statistica sinica 6(4), 733-760.
Gelman, A. & Rubin, D. B. (1992), `Inference from iterative simulation using multiple sequences', Statistical Science 7(4), 457-472.
Guerra, R. R., Peña-Ramírez, F. A. & Bourguignon, M. (2021), `The unit extended Weibull families of distributions and its applications', Journal of Applied Statistics 48(16), 3174-3192.
Hahn, E. D. (2008), `Mixture densities for project management activity times: A robust approach to PERT', European Journal of operational research 188(2), 450-459.
Hamedi-Shahraki, S., Rasekhi, A., Yekaninejad, M. S., Eshraghian, M. R. & Pakpour, A. H. (2021), `Kumaraswamy regression modeling for bounded outcome scores', Pakistan Journal of Statistics and Operation Research 17(1), 79-88.
Kim, M., Kaplan, B. A., Ko Arnus, M. N. & Franck, C. T. (2025), `Scale-location-truncated beta regression: expanding beta regression to accommodate 0 and 1', arXiv preprint arXiv:2509.13167.
Koenker, R. & Bassett Jr, G. (1978), `Regression quantiles', Econometrica: journal of the Econometric Society 46(1), 33-50.
Korkmaz, M. Ç., Altun, E., Chesneau, C. & Yousof, H. M. (2022), `On the unit-Chen distribution with associated quantile regression and applications', Mathematica Slovaca 72(3), 765-786.
Korkmaz, M. Ç. & Chesneau, C. (2021), `On the unit Burr-XII distribution with the quantile regression modeling and applications', Computational and Applied Mathematics 40(1), 29.
Lee, E. T. & Wang, J. W. (2003), Statistical Methods for Survival Data Analysis, Wiley Series in Probability and Statistics, 3 edn, Wiley.
López, F. O. (2013), `A Bayesian approach to parameter estimation in simplex regression model: a comparison with Beta regression', Revista Colombiana de Estadística 36(1), 1-21.
Mazucheli, J., Alves, B., Menezes, A. F. & Leiva, V. (2022), `An overview on parametric quantile regression models and their computational implementation with applications to biomedical problems including COVID-19 data', Computer Methods and Programs in Biomedicine 221, 106816.
Mazucheli, J., Korkmaz, M. Ç., Menezes, A. F. B. & Leiva, V. (2023), `The unit generalized half-normal quantile regression model: formulation, estimation, diagnostics, and numerical applications', Soft Computing 27(1), 279-295.
Mazucheli, J., Menezes, A., Fernandes, L., De Oliveira, R. & Ghitany, M. (2019), `The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates', Journal of Applied Statistics 47(6), 954-974.
Mazucheli, J., Menezes, A., Fernandes, L., De Oliveira, R. & Ghitany, M. (2020), `The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates', Journal of Applied Statistics 47(6), 954-974.
McCullagh, P. & Nelder, J. A. (1989), Generalized Linear Models, 2 edn, Chapman and Hall, London.
McCulloch, R. E. (1989), `Local model influence', Journal of the American Statistical Association 84(406), 473-478.
McElreath, R. (2020), Statistical Rethinking: A Bayesian Course with Examples in R and Stan, 2 edn, CRC Press.
Meng, X.-L. (1994), `Posterior predictive p-values', The Annals of Statistics 22(3), 1142-1160.
Merkle, E. C., Furr, D. & Rabe-Hesketh, S. (2019), `Bayesian comparison of latent variable models: Conditional versus marginal likelihoods', Psychometrika 84(3), 802-829.
Migliorati, S., Di Brisco, A. M. & Ongaro, A. (2018), `A new regression model for bounded responses', Bayesian Analysis 13(3), 845-872.
Mitnik, P. A. & Baek, S. (2013), `The Kumaraswamy distribution: median-dispersion re-parameterizations for regression modeling and simulation-based estimation', Statistical Papers 54(1), 177-192.
Mousa, A. M., El-Sheikh, A. A. & Abdel-Fattah, M. A. (2016), `A gamma regression for bounded continuous variables', Advances and Applications in Statistics 49(4), 305-326.
Oliveira, E. S., de Castro, M., Bayes, C. L. & Bazan, J. L. (2022), `Bayesian quantile regression models for heavy tailed bounded variables using the No-U-Turn sampler', Computational Statistics 40, 3007-3040.
R Core Team (2024), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. https://www.Rproject.org/
Ribeiro, V. S., Nobre, J. S., dos Santos, J. R. S. & Azevedo, C. L. (2021), `Beta rectangular regression models to longitudinal data', Brazilian Journal of Probability and Statistics 35(4), 851-874.
Robert, C. P. (2007), The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation, 2 edn, Springer.
Rocha, E. O., Azevedo, C. L. N., Mota, J. M. A., Batista, M. J. & Nobre, J. S. (2024), `Bayesian inference for unit gamma distribution', Cuaderno Pedagógico 21(9), 1-23.
Rubin, D. B. (1984), `Bayesianly justi able and relevant frequency calculations for the applied statistician', The Annals of Statistics 12(4), 1151-1172.
Silva, C. R. d., Lima Filho, L. M. d. A., Pereira, T. L. & Duarte Neto, P. J. (2025), `Shewhart-type control chart based on unit gamma distribution inflated at zero or one', Journal of Statistical Computation and Simulation 95(8), 1887-1908.
Smithson, M. & Verkuilen, J. (2006), `A better lemon squeezer? maximumlikelihood regression with Beta-distributed dependent variables', Psychological methods 11(1), 54-71.
Song, P. X.-K. & Tan, M. (2000), `Marginal models for longitudinal continuous proportional data', Biometrics 56(2), 496-502.
Vehtari, A., Gelman, A. & Gabry, J. (2017), `Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC', Statistics and computing 27(5), 1413-1432.
Venezuela, M. K., Aparecida Botter, D. & Carneiro Sandoval, M. (2007), `Diagnostic techniques in generalized estimating equations', Journal of Statistical Computation and Simulation 77(10), 879-888.
Vidal, I. & Castro, L. M. (2010), `Influential observations in the independent student-t measurement error model with weak nondifferential error', Chilean Journal of Statistics 1(2), 17-34.
Watanabe, S. (2010), `Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory', Journal of machine learning research 11(12), 3571-3594.
Zhou, H., Huang, X. & Initiative, A. D. N. (2020), `Parametric mode regression for bounded responses', Biometrical Journal 62(7), 1791-1809.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






