Published
Promotion Time Cure Regression Model with Power Piecewise Exponential Distribution for Credit Scoring Data
Modelo de regresión con cura de tiempo de promoción con distribución potencia exponencial por partes para datos de calificación crediticia
DOI:
https://doi.org/10.15446/rce.v48n3.123501Keywords:
Credit risk, Long-term survival model, Time-to-default, Weibull (en)Modelo de supervivencia a largo plazo, Tiempo hasta el impago, Riesgo crediticio, Weibull (es)
Downloads
In the financial context, survival analysis has been used in a variety of ways, like in the study (Borelli & Lucena, 2022), which aims to estimate the time until the recovery of overdue credit portfolios, with a focus on pricing non-performing credit portfolios. As in the study by Ramirez (2016), which aimed to estimate the time until default, evaluating the conditioning variables for credit delay. One of the objectives of this paper is to analyze a real dataset about credit, to model the time until the customer of a financial company, located in Rio Grande do Sul - Brazil, becomes defaulter. Therefore, in this paper it is proposed a model for survival data with cure rate, in which the distribution of the times is adjusted by the power piecewise exponential (PPE) distribution. The other objective is to propose a model that has not yet been explored jointly in the literature, through the construction of a long-term survival model, considering the approach of the promotion time models (Yakovlev & Tsodikov, 1996) and the power piecewise exponential distribution (Gómez et al., 2017). To evaluate the performance of the proposed model, a simulation study was carried out comparing the proposed model with models available in the literature (Weibull and piecewise exponential), using the R software. Finally, an application of the proposed model was conducted on a real data set related to personal loans, to evaluate the applicability of the model in a credit context.
References
Albuquerque, P. H. M., Medina, F. A. S. & da Silva, A. R. (2017), `Regressão logística geograficamente ponderada aplicada a modelos de credit scoring', Revista Contabilidade & Finanças 28(73), 93-112.
Araújo, E. A. & Carmona, C. U. D. M. (2009), `Construção de modelos credit scoring com análise discriminante e regressão logística para a gestão do risco de inadimplência de uma instituição de microcrédito', Revista eletrônica de administração 15(1), 50-77.
Araújo, E. A. & de Montreuil Carmona, C. U. (2007), `Desenvolvimento de modelos credit scoring com abordagem de regressão logística para a gestão da inadimplência de uma instituição de microcrédito', Contabilidade Vista & Revista 18(3), 107-131.
BACEN (2006), Core principles for effective banking supervision. Acessado em 18/08/2023. www.bcb.gov.br/fis/supervisao/docs/core_principles_traducao2006.pdf
Berkson, J. & Gage, R. P. (1952), `Survival curve for cancer patients following treatment', Journal of the American Statistical Association 47(259), 501-515.
Boag, J. W. (1949), `Maximum likelihood estimates of the proportion of patients cured by cancer therapy', Journal of the Royal Statistical Society. Series B (Methodological) 11(1), 15-53.
Borelli, E. & Lucena, B. D. (2022), `Recuperação de crédito estimada pela análise de sobrevivência: Credit recovery estimated by survival analysis', Revista de Gestão e Secretariado (Management and Administrative Professional Review) 13(3), 949-973.
Caouette, J. B., Altman, E. I. & Narayanan, P. (1998), Managing credit risk: the next great financial challenge, Frontiers in Finance Series, Editora Wiley.
Carneiro, H. P. d. A. (2012), Testes de hipóteses em modelos de sobrevivência com fração de cura, Mestrado em estatística, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte.
Castro, M. & Gómez, Y. M. (2020), `A bayesian cure rate model based on the power piecewise exponential distribution', Methodology and Computing in Applied Probability 22(2), 677-692.
Demarqui, F. N. (2010), Uma classe mais flexível de modelos semiparamétricos para dados de sobrevivência, Doutorado em estatística, Universidade Federal de Minas Gerais, Minas Gerais.
Gómez, Y. M., Gallardo, D. I. & Arnold, B. C. (2017), `The power piecewise exponential model', Journal of Statistical Computation and Simulation 88(5), 825-840.
González-Hermosillo, M. B. (1999), Determinants of ex-ante banking system distress: A macro-micro empirical exploration of some recent episodes, Editora International Monetary Fund.
Ibrahim, J. G., Chen, M.-H. & Sinha, D. (2001), `Bayesian semiparametric models for survival data with a cure fraction', Biometrics 57(2), 383-388.
Kalbfleisch, J. D. & Prentice, R. L. (1973), `Marginal likelihoods based on cox's regression and life model', Biometrika 60(2), 267-278.
Lehmann, E. L. (1953), `The power of rank tests', The Annals of Mathematical Statistics 24(1), 23-43.
Moraes Sousa, M. & Figueiredo, R. S. (2014), `Análise de crédito por meio de mineração de dados: aplicação em cooperativa de crédito', JISTEM-Journal of Information Systems and Technology Management 11(2), 379-396.
Pal, S., Barui, S., Davies, K. & Mishra, N. (2022), `A stochastic version of the em algorithm for mixture cure model with exponentiated weibull family of lifetimes', Journal of Statistical Theory and Practice 16(3), 48.
Prazeres Filho, J. (2014), Capacidade preditiva de modelos credit scoring em inferência dos rejeitados, Mestrado em estatística, Universidade Federal de São Carlos, São Paulo.
R Core Team (2020), R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. https://www.Rproject.org/
Ramirez, D. B. (2016), Com uma lupa e um binóculo: uma investigação sobre a inadimplência de um banco de desenvolvimento através de análise de sobrevivência, Mestrado em economia, Universidade Federal de Santa Catarina, Santa Catarina.
Saeed, M. & Izzeldin, M. (2016), `Examining the relationship between default risk and efficiency in islamic and conventional banks', Journal of Economic Behavior & Organization 132(1), 127-154.
Santos Junior, P. C. & Schneider, S. (2022), `Power piecewise exponential model for interval-censored data', Journal of Statistical Theory and Practice 16(2), 26.
Silva, P. C. (2017), Regressão logística e análise discriminante na predição da recuperação de portfólios de créditos do tipo non-performing loans, Mestrado em engenharia de produção, Universidade Nove de Julho, São Paulo.
Yakovlev, A. & Tsodikov, A. (1996), Stochastic models of tumor latency and their biostatistical applications, Vol. 1, Editora World Scientific, Editora Singapore.
Yu, B., Tiwari, R. C., Cronin, K. A. & Feuer, E. J. (2004), `Cure fraction estimation from the mixture cure models for grouped survival data', Statistics in medicine 23(11), 1733-1747.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






