Published
A Mean-Parameterized Maxwell Time Series Model for Positive Data
Un modelo de series temporales Maxwell con parametrización en la media para datos positivos
DOI:
https://doi.org/10.15446/rce.v48n3.123621Keywords:
ARMA models, Maxwell distribution, Mean parametrization, Positive time series. (en)Distribución Maxwell, Modelos ARMA, Parametrización, Series de tiempo positivas. (es)
Downloads
This paper introduces a new time series model for non-negative continuous data based on the Maxwell distribution. The proposed model employs a reparameterization of the Maxwell distribution in which its parameter directly represents the mean. In this formulation, the conditional mean is modeled through a dynamic structure that combines autoregressive and moving average components, linked by an appropriate link function. Parameter estimation is carried out using the conditional maximum likelihood method, for which closed-form matrix expressions of the conditional score vector and the conditional Fisher information matrix are derived. Based on the asymptotic properties of the estimators, procedures for interval estimation and hypothesis testing are presented. Monte Carlo simulations assess the finite-sample performance, and provide evidence of the estimators' convergence toward the true parameter values as the sample size increases. An empirical application involving wind speed data from Brasília, the capital of Brazil, shows the practical relevance and effectiveness of the proposed model for real-world time series modeling and forecasting.
Este trabajo introduce un nuevo enfoque para modelar series temporales positivas y continuas basado en la distribución Maxwell. El modelo propuesto utiliza una reparametrización de dicha distribución, en la cual su parámetro de escala representa directamente la media. En esta formulación, la media condicional se modela mediante una estructura dinámica que combina componentes autorregresivos y de media móvil, vinculados a través de una apropiada función de enlace. La estimación de los parámetros se realiza mediante el método de máxima verosimilitud condicional, para el cual se derivan expresiones matriciales en forma cerrada del vector score condicional y de la matriz de información de Fisher. Con base en las propiedades asintóticas de los estimadores, se presentan procedimientos para la estimación por intervalos y pruebas de hipótesis. Mediante simulaciones de Monte Carlo se evalúa el desempeño en muestras infinitas y se aporta evidencia de la convergencia de los estimadores hacia los valores verdaderos de los parámetros a medida que aumenta el tamaño muestral. Una aplicación empírica con datos de velocidad del viento en Brasilia, capital de Brasil, demuestra la relevancia práctica y la eficacia del modelo propuesto para el ajuste y predicción de series temporales reales.
References
Akaike, H. (1974), `A new look at the statistical model identification', IEEE Transactions on Automatic Control 19(6), 716-723.
Andersen, B. A. (1970), `Asymptotic properties of conditional maximum-likelihood estimators', Journal of the Royal Statistical Society. Series B 32(1), 283-301.
Ansley, C. F. & Newbold, P. (1980), `Finite sample properties of estimators for autoregressive moving average models', Journal of Econometrics 13(2), 159-183.
Bayer, F. M., Bayer, D. M., Marinoni, A. & Gamba, P. (2020), `A novel Rayleigh dynamical model for remote sensing data interpretation', IEEE Transactions on Geoscience and Remote Sensing 58(7), 4989-4999.
Bayer, F. M., Bayer, D. M. & Pumi, G. (2017), `Kumaraswamy autoregressive moving average models for double bounded environmental data', Journal of Hydrology 555, 385-396.
Bekker, A. J. J. J. & Roux, J. J. J. (2005), `Reliability characteristics of the Maxwell distribution: a Bayes estimation study', Communications in Statistics - Theory and Methods 34(11), 2169-2178.
Benjamin, M. A., Rigby, R. A. & Stasinopoulos, D. M. (2003), `Generalized autoregressive moving average models', Journal of the American Statistical Association 98(461), 214-223.
Boltzmann, L. (1868), `Wiener Ber.', Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien 58, 517-560.
Box, G. E., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M. (2015), Time series analysis: forecasting and control, John Wiley & Sons.
Brockwell, P. J. & Davis, R. A. (1991), Time series: theory and methods, Springer, New York.
Chaturvedi, A. & Rani, U. (1998), `Classical and Bayesian reliability estimation of the generalized Maxwell failure distribution', Journal of Statistical Research 32(1), 113-120.
de Araújo, F. J. M., Guerra, R. R. & Peña-Ramírez, F. A. (2024), `Quantile-based dynamic modeling of asymmetric data: a novel Burr XII approach for positive continuous random variables', International Journal of Data Science and Analytics pp. 1-20.
Dey, S. & Maiti, S. S. (2010), `Bayesian estimation of the parameter of Maxwell distribution under different loss functions', Journal of Statistical Theory and Practice 4, 279-287.
Douak, F., Melgani, F. & Benoudjit, N. (2013), `Kernel ridge regression with active learning for wind speed prediction', Applied Energy 103, 328-340.
Dunn, P. K. & Smyth, G. K. (1996), `Randomized quantile residuals', Journal of Computational and Graphical Statistics 5(3), 236-244.
Energy Sector Management Assistance Program (2019), Going global: expanding offshore wind to emerging markets, World Bank.
Fahrmeir, L. & Kaufmann, H. (1985), `Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models', The Annals of Statistics 13(1), 342-368.
Hyndman, R. J. & Khandakar, Y. (2008), `Automatic time series forecasting: the forecast package for R', Journal of Statistical Software 27, 1-22.
Hyndman, R. J. & Koehler, A. B. (2006), `Another look at measures of forecast accuracy', International Journal of Forecasting 22(4), 679-688.
International Renewable Energy Agency (IRENA) (2024), `Wind energy'. Accessed: October 2025. https://www.irena.org/EnergyTransition/Technology/Wind-energy
Kazmi, S. M. A., Aslam, M. & Ali, S. (2011), `A note on the maximum likelihood estimators for the mixture of Maxwell distributions using type-I censored scheme', The Open Statistics and Probability Journal 3(1).
Kazmi, S. M. A., Aslam, M. & Ali, S. (2012), `Preference of prior for the class of lifetime distributions under different loss functions', Pakistan Journal of Statistics 28(4).
Kendall, M. G. (1948), The Advanced Theory of Statistics: Distribution Theory, Vol. 1, Charles Gri n and Company, London.
Khosravi, A., Machado, L. & Nunes, R. O. (2018), `Time-series prediction of wind speed using machine learning algorithms: a case study of Osorio wind farm, Brazil', Applied Energy 224, 550-566.
Konishi, S. & Kitagawa, G. (2008), Bayesian information criteria, in `Information Criteria and Statistical Modeling', Springer, New York, pp. 211-237.
Lemonte, A. J. (2024), `A simple mean-parameterized Maxwell regression model for positive response variables', REVSTAT - Statistical Journal 22(4), 503-526.
Ljung, G. M. & Box, G. E. P. (1978), `On a measure of lack of t in time series models', Biometrika 65(2), 297-303.
Maxwell, J. C. (1867), `On the dynamical theory of gases', Philosophical Transactions of the Royal Society of London 157, 49-88.
Melo, M. & Alencar, A. (2020), `The Conway-Maxwell-Poisson autoregressive moving average model for equidispersed, underdispersed, and overdispersed count data', Journal of Time Series Analysis 41(6), 830-857.
Palm, B. G. & Bayer, F. M. (2018), `Bootstrap-based inferential improvements in beta autoregressive moving average model', Communications in Statistics - Simulation and Computation 47(4), 977-996.
Palm, B. G., Bayer, F. M., Cintra, R. J., Pettersson, M. I. & Machado, R. (2019), `Rayleigh regression model for ground type detection in SAR imagery', IEEE Geoscience and Remote Sensing Letters 16(10), 1660-1664.
R Core Team (2024), R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. https://www.R-proje ct.org/
Radha, R. K. & Venkatesan, P. (2013), `On the double prior selection for the parameter of Maxwell distribution', International Journal of Scientific & Engineering Research 4(5), 1238-1241.
Rocha, A. V. & Cribari-Neto, F. (2009), `Beta autoregressive moving average models', TEST 18(3), 529-545.
Stone, R. F., Loose, L. H., Melo, M. S. & Bayer, F. M. (2023), `The Chen autoregressive moving average model for modeling asymmetric positive continuous time series', Symmetry 15(9), 1675.
Tomer, S. K. & Panwar, M. S. (2015), `Estimation procedures for Maxwell distribution under type-I progressive hybrid censoring scheme', Journal of Statistical Computation and Simulation 85(2), 339-356.
Tyagi, R. K. & Bhattacharya, S. K. (1989), `A note on the MVU estimation of reliability for the Maxwell failure distribution', Estadistica 41(137), 73-79.
Vetterling, W. T. & Press, W. H. (1992), Numerical recipes: example book C, Cambridge University Press.
Winters, P. R. (1960), `Forecasting sales by exponentially weighted moving averages', Management Science 6(3), 324-342.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






