Published

2025-12-01

Labor Income Determinants in Colombia: An Approach based on Generalized Additive Models for Location, Scale and Shape (GAMLSS)

Determinantes del ingreso laboral en Colombia: una aproximación a partir de un modelo aditivo de localización, escala y forma (GAMLSS)

DOI:

https://doi.org/10.15446/rce.v48n3.123657

Keywords:

GAMLSS, Labor income, Linear model, Mincer equation. (en)
Ecuación de Mincer, GAMLSS, Ingreso laboral, Modelo clásico lineal. (es)

Downloads

Authors

  • Sofía Gallego Ruiz Universidad Nacional de Colombia
  • Anna maría Saavedra Ávila Universidad Nacional de Colombia
  • Mario E. Arrieta Prieto Universidad Nacional de Colombia

Human capital theory posits a central hypothesis: there is a direct relationship between individuals' levels of education and their productivity, which in turn leads to higher earnings. To evaluate this hypothesis, the economic literature commonly estimates the Mincer equation using the classical linear regression model. In this paper, both the traditional approach and a GAMLSS model with the Dagum distribution are estimated for wage earners in private firms and the public sector in Colombia in 2024. The hypothesis that an individual's rate of return increases with years of education, and that it rises with years of experience up to a certain point in the life cycle before declining, is confirmed by both the linear regression and the GAMLSS model. Model selection is based on the Generalized Akaike Information Criterion (GAIC), and the results show that the GAMLSS provides a better fit than the linear regression model.

La teoría del capital humano plantea una hipótesis: existe una relación directa entre los niveles de educación de los individuos y sus niveles de productividad y, por tanto, devengarán ingresos más altos. Para evaluarla, la literatura económica estima la ecuación de Mincer a partir del planteamiento de un modelo de regresión lineal clásico. En el presente documento, se estima el enfoque tradicional y un modelo GAMLSS para la distribución Dagum para los trabajadores de empresas y del gobierno en Colombia en 2024. La hipótesis de que la tasa de ganancia de un individuo se incrementa con los años de educación y que la tasa de ganancia incrementa con los años de experiencia hasta cierto punto en el ciclo de la vida y, posteriormente, desciende, se confirman luego de estimar el modelo de regresión lineal y el GAMLSS. Para seleccionar el modelo, se calcula el Criterio de Información de Akaike Genralizado (AIC) y se concluye que el GAMLSS tiene una mejor bondad de ajuste frente al modelo de regresión lineal.

References

Alghufily, N., Sultan, K. S. & Radwan, H. M. M. (2025), `Multivariate modified Dagum distribution and its applications', Mathematics 13(10), 1620.

Arias, Y. & Chávez, A. (2002), Cálculo de la tasa interna de retorno de la educación en colombia, Technical Report Documento de Trabajo No. 2, Universidad Externado de Colombia, Bogotá.

Betti, G., Molini, V. & Mori, L. (2024), `An attempt to correct the underestimation of inequality measures in cross-survey imputation through generalized additive models for location, scale and shape', Socio-Economic Planning Sciences 91, 101784.

Carneosso, C. C., De Andrade, T. A. N. & Bisognin, C. (2024), `New unconditional and quantile regression model Erf-Weibull: An alternative to gamma, gumbel and exponentiated exponential distributions', Revista Colombiana de Estadística 47(2), 301-327.

Departamento Administrativo Nacional de Estadística (2024), `National quality of life survey (ENCV 2024)'.

García, A., Guataquí, J. & Rodríguez, M. (2009), Estimaciones de los determinantes de los ingresos laborales en colombia, Technical Report Documentos de Trabajo No. 70, Universidad del Rosario, Bogotá.

Hohberg, M., Donat, F., Marra, G. & Kneib, T. (2021), `Beyond unidimensional poverty analysis using distributional copula models for mixed ordered-continuous outcomes', Journal of the Royal Statistical Society: Series C 70(5), 1365-1390.

Kakamu, K. (2016), `Simulation studies comparing Dagum and Singh Maddala income distributions', Computational Economics 48(4), 593-605.

Klein, N., Kneib, T., Lang, S. & Sohn, A. (2015), Bayesian structured additive distributional regression with an application to regional income inequality in germany. Working paper.

Lemieux, T. (2003), The Mincer equation thirty years after schooling, experience, and earnings, in S. Grossbard, ed., `Jacob Mincer: A pioneer of modern labor economics', Springer, Boston, MA.

López-Rodríguez, F., García-Sanz-Calcedo, J., Moral-García, F. J. & GarcíaConde, A. J. (2019), `Statistical study of rainfall control: The Dagum distribution and applicability to the southwest of spain', Water 11(3), 453.

Mincer, J. A. (1974), The human capital earnings function, in `Schooling, experience, and earnings', National Bureau of Economic Research, pp. 83-96.

Mori, L. & Ferrante, M. R. (2025), `Small area estimation of household economic indicators under unit-level generalized additive models for location, scale and shape', Journal of Survey Statistics and Methodology 13(1), 160-196.

Rigby, R. A. & Stasinopoulos, D. M. (2005), `Generalized additive models for location, scale and shape', Journal of the Royal Statistical Society: Series C 54, 507-554.

Spasova, T. (2024), `Estimating income distributions from grouped data: A minimum quantile distance approach', Computational Economics 64(4), 2079-2096.

Zárate, H. (2003), Cambios en la estructura salarial: Una historia desde la regresión cuantílica, Technical Report Borradores de Economía No. 245, Banco de la República, Bogotá.

How to Cite

APA

Gallego Ruiz, S., Saavedra Ávila, A. maría & Arrieta Prieto, M. E. (2025). Labor Income Determinants in Colombia: An Approach based on Generalized Additive Models for Location, Scale and Shape (GAMLSS). Revista Colombiana de Estadística, 48(3), 459–478. https://doi.org/10.15446/rce.v48n3.123657

ACM

[1]
Gallego Ruiz, S., Saavedra Ávila, A. maría and Arrieta Prieto, M.E. 2025. Labor Income Determinants in Colombia: An Approach based on Generalized Additive Models for Location, Scale and Shape (GAMLSS). Revista Colombiana de Estadística. 48, 3 (Dec. 2025), 459–478. DOI:https://doi.org/10.15446/rce.v48n3.123657.

ACS

(1)
Gallego Ruiz, S.; Saavedra Ávila, A. maría; Arrieta Prieto, M. E. Labor Income Determinants in Colombia: An Approach based on Generalized Additive Models for Location, Scale and Shape (GAMLSS). Rev. colomb. estad. 2025, 48, 459-478.

ABNT

GALLEGO RUIZ, S.; SAAVEDRA ÁVILA, A. maría; ARRIETA PRIETO, M. E. Labor Income Determinants in Colombia: An Approach based on Generalized Additive Models for Location, Scale and Shape (GAMLSS). Revista Colombiana de Estadística, [S. l.], v. 48, n. 3, p. 459–478, 2025. DOI: 10.15446/rce.v48n3.123657. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/123657. Acesso em: 24 dec. 2025.

Chicago

Gallego Ruiz, Sofía, Anna maría Saavedra Ávila, and Mario E. Arrieta Prieto. 2025. “Labor Income Determinants in Colombia: An Approach based on Generalized Additive Models for Location, Scale and Shape (GAMLSS)”. Revista Colombiana De Estadística 48 (3):459-78. https://doi.org/10.15446/rce.v48n3.123657.

Harvard

Gallego Ruiz, S., Saavedra Ávila, A. maría and Arrieta Prieto, M. E. (2025) “Labor Income Determinants in Colombia: An Approach based on Generalized Additive Models for Location, Scale and Shape (GAMLSS)”, Revista Colombiana de Estadística, 48(3), pp. 459–478. doi: 10.15446/rce.v48n3.123657.

IEEE

[1]
S. Gallego Ruiz, A. maría Saavedra Ávila, and M. E. Arrieta Prieto, “Labor Income Determinants in Colombia: An Approach based on Generalized Additive Models for Location, Scale and Shape (GAMLSS)”, Rev. colomb. estad., vol. 48, no. 3, pp. 459–478, Dec. 2025.

MLA

Gallego Ruiz, S., A. maría Saavedra Ávila, and M. E. Arrieta Prieto. “Labor Income Determinants in Colombia: An Approach based on Generalized Additive Models for Location, Scale and Shape (GAMLSS)”. Revista Colombiana de Estadística, vol. 48, no. 3, Dec. 2025, pp. 459-78, doi:10.15446/rce.v48n3.123657.

Turabian

Gallego Ruiz, Sofía, Anna maría Saavedra Ávila, and Mario E. Arrieta Prieto. “Labor Income Determinants in Colombia: An Approach based on Generalized Additive Models for Location, Scale and Shape (GAMLSS)”. Revista Colombiana de Estadística 48, no. 3 (December 22, 2025): 459–478. Accessed December 24, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/123657.

Vancouver

1.
Gallego Ruiz S, Saavedra Ávila A maría, Arrieta Prieto ME. Labor Income Determinants in Colombia: An Approach based on Generalized Additive Models for Location, Scale and Shape (GAMLSS). Rev. colomb. estad. [Internet]. 2025 Dec. 22 [cited 2025 Dec. 24];48(3):459-78. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/123657

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

14

Downloads

Download data is not yet available.