Published
Labor Income Determinants in Colombia: An Approach based on Generalized Additive Models for Location, Scale and Shape (GAMLSS)
Determinantes del ingreso laboral en Colombia: una aproximación a partir de un modelo aditivo de localización, escala y forma (GAMLSS)
DOI:
https://doi.org/10.15446/rce.v48n3.123657Keywords:
GAMLSS, Labor income, Linear model, Mincer equation. (en)Ecuación de Mincer, GAMLSS, Ingreso laboral, Modelo clásico lineal. (es)
Downloads
Human capital theory posits a central hypothesis: there is a direct relationship between individuals' levels of education and their productivity, which in turn leads to higher earnings. To evaluate this hypothesis, the economic literature commonly estimates the Mincer equation using the classical linear regression model. In this paper, both the traditional approach and a GAMLSS model with the Dagum distribution are estimated for wage earners in private firms and the public sector in Colombia in 2024. The hypothesis that an individual's rate of return increases with years of education, and that it rises with years of experience up to a certain point in the life cycle before declining, is confirmed by both the linear regression and the GAMLSS model. Model selection is based on the Generalized Akaike Information Criterion (GAIC), and the results show that the GAMLSS provides a better fit than the linear regression model.
La teoría del capital humano plantea una hipótesis: existe una relación directa entre los niveles de educación de los individuos y sus niveles de productividad y, por tanto, devengarán ingresos más altos. Para evaluarla, la literatura económica estima la ecuación de Mincer a partir del planteamiento de un modelo de regresión lineal clásico. En el presente documento, se estima el enfoque tradicional y un modelo GAMLSS para la distribución Dagum para los trabajadores de empresas y del gobierno en Colombia en 2024. La hipótesis de que la tasa de ganancia de un individuo se incrementa con los años de educación y que la tasa de ganancia incrementa con los años de experiencia hasta cierto punto en el ciclo de la vida y, posteriormente, desciende, se confirman luego de estimar el modelo de regresión lineal y el GAMLSS. Para seleccionar el modelo, se calcula el Criterio de Información de Akaike Genralizado (AIC) y se concluye que el GAMLSS tiene una mejor bondad de ajuste frente al modelo de regresión lineal.
References
Alghufily, N., Sultan, K. S. & Radwan, H. M. M. (2025), `Multivariate modified Dagum distribution and its applications', Mathematics 13(10), 1620.
Arias, Y. & Chávez, A. (2002), Cálculo de la tasa interna de retorno de la educación en colombia, Technical Report Documento de Trabajo No. 2, Universidad Externado de Colombia, Bogotá.
Betti, G., Molini, V. & Mori, L. (2024), `An attempt to correct the underestimation of inequality measures in cross-survey imputation through generalized additive models for location, scale and shape', Socio-Economic Planning Sciences 91, 101784.
Carneosso, C. C., De Andrade, T. A. N. & Bisognin, C. (2024), `New unconditional and quantile regression model Erf-Weibull: An alternative to gamma, gumbel and exponentiated exponential distributions', Revista Colombiana de Estadística 47(2), 301-327.
Departamento Administrativo Nacional de Estadística (2024), `National quality of life survey (ENCV 2024)'.
García, A., Guataquí, J. & Rodríguez, M. (2009), Estimaciones de los determinantes de los ingresos laborales en colombia, Technical Report Documentos de Trabajo No. 70, Universidad del Rosario, Bogotá.
Hohberg, M., Donat, F., Marra, G. & Kneib, T. (2021), `Beyond unidimensional poverty analysis using distributional copula models for mixed ordered-continuous outcomes', Journal of the Royal Statistical Society: Series C 70(5), 1365-1390.
Kakamu, K. (2016), `Simulation studies comparing Dagum and Singh Maddala income distributions', Computational Economics 48(4), 593-605.
Klein, N., Kneib, T., Lang, S. & Sohn, A. (2015), Bayesian structured additive distributional regression with an application to regional income inequality in germany. Working paper.
Lemieux, T. (2003), The Mincer equation thirty years after schooling, experience, and earnings, in S. Grossbard, ed., `Jacob Mincer: A pioneer of modern labor economics', Springer, Boston, MA.
López-Rodríguez, F., García-Sanz-Calcedo, J., Moral-García, F. J. & GarcíaConde, A. J. (2019), `Statistical study of rainfall control: The Dagum distribution and applicability to the southwest of spain', Water 11(3), 453.
Mincer, J. A. (1974), The human capital earnings function, in `Schooling, experience, and earnings', National Bureau of Economic Research, pp. 83-96.
Mori, L. & Ferrante, M. R. (2025), `Small area estimation of household economic indicators under unit-level generalized additive models for location, scale and shape', Journal of Survey Statistics and Methodology 13(1), 160-196.
Rigby, R. A. & Stasinopoulos, D. M. (2005), `Generalized additive models for location, scale and shape', Journal of the Royal Statistical Society: Series C 54, 507-554.
Spasova, T. (2024), `Estimating income distributions from grouped data: A minimum quantile distance approach', Computational Economics 64(4), 2079-2096.
Zárate, H. (2003), Cambios en la estructura salarial: Una historia desde la regresión cuantílica, Technical Report Borradores de Economía No. 245, Banco de la República, Bogotá.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






