Published

2025-12-01

Exploring and Comparing Pairwise Nonlinear Association Measures for Continuous

Variables Exploración y comparación de medidas de asociación no lineal por pares para variables continuas

DOI:

https://doi.org/10.15446/rce.v48n3.123662

Keywords:

Correlation coefficient, Maximum correlation, Permutation test. (en)
Coeficiente de correlación, Correlación máxima, Prueba de permutación. (es)

Downloads

Authors

  • Alisson L. Brito Universidad Federal de Pernambuco
  • Fernanda De Bastiani Universidad Federal de Pernambuco
  • Mikis D. Stasinopoulos University of Greenwich
  • Robert A. Rigby University of Greenwich
  • Roberto F. Manghi Federal University of Pernambuco
  • Thomas Kneib Georg August Universität Göttingen

There are many linear and nonlinear measures of association between two continuous pairwise variables. They are used to indicate the strength of the relationship between the two variables. The question thus arises as to which of these measures should be used to explore relationships between two variables in general. The identification of linear and/or nonlinear relationship between two variables can help to avoid problems within a regression framework. The objective of this paper is to examine alternative measures of association that could be employed as a replacement or in conjunction with, standard linear correlation coefficients. The results lead us to conclude that the maximum correlation measure is particularly useful, and capable of detecting linear and nonlinear associations between two continuous variables, while also being relatively computationally efficient. It can be utilized in exploratory analysis and in a modern regression framework.

 

 

Existen numerosas medidas de asociación, tanto lineales como no lineales, entre pares de variables continuas. Estas medidas se utilizan para indicar la fuerza de la relación entre las dos variables. Surge entonces la pregunta de cuál de estas medidas debería emplearse para explorar, en general, las relaciones entre dos variables. La identificación de relaciones lineales o no lineales puede ayudar a evitar problemas en modelos de regresión. El objetivo de este trabajo es examinar medidas alternativas de asociación que podrían utilizarse como reemplazo o en conjunto con los coeficientes de correlación lineal estándar. Los resultados nos llevan a concluir que la medida de correlación máxima es particularmente útil y capaz de detectar asociaciones no lineales entre variables continuas, además de ser relativamente eficiente desde el punto de vista computacional. Puede emplearse tanto en análisis exploratorios como en un marco de regresión moderno.

References

Albanese, D., Filosi, M., Visintainer, R., Riccadonna, S., Jurman, G. & Furlanello, C. (2013), 'Minerva and minepy: a C engine for the MINE suite and its R, Python and MATLAB wrappers', Bioinformatics 29(3), 407-408.

Breiman, L. & Friedman, J. H. (1985), ‘Estimating optimal transformations for multiple regression and correlation’, Journal of the American statistical Association 80(391), 580-598.

Buja, A. (1990), ‘Remarks on functional canonical variates, alternating least squares methods and ace’, The Annals of Statistics pp. 1032-1069.

Buja, A., Hastie, T. & Tibshirani, R. (1989), ‘Linear smoothers and additive models’, The Annals of Statistics pp. 453-510.

Edelmann, D., Fokianos, K. & Pitsillou, M. (2019), ‘An updated literature review of distance correlation and its applications to time series’, International Statistical Review 87(2), 237-262.

Efron, B. & Tibshirani, R. J. (1993), An introduction to the bootstrap, CRC press.

Eilers, P. H. & Marx, B. D. (1996), ‘Flexible smoothing with b-splines and penalties’, Statistical science 11(2), 89-121.

Fisher, R. A. (1915), ‘Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population’, Biometrika 10(4), 507-521.

Fisher, R. A. (1935), The Design of Experiments, Oliver and Boyd, Edinburgh.

Fung, W.-K., Zhu, Z.-Y., Wei, B.-C. & He, X. (2002), ‘Influence diagnostics and outlier tests for semiparametric mixed models’, Journal of the Royal Statistical Society Series B: Statistical Methodology 64(3), 565-579.

Galton, F. (1888), ‘Co-relations and their measurement, chiefly from anthropometric data’, Proceedings of the Royal Society of London 45, 135-145.

Gebelein, H. (1941), ‘Das statistische problem der korrelation als variations- und eigenwertproblem und sein zusammenhang mit der ausgleichsrechnung’, ZAMM – Journal of Applied Mathematics and Mechanics 21(6), 364-379.

Harold, H. (1936), ‘Relations between two sets of variates’, Biometrika 28, 321-377.

Harrell, Frank E., J. (2015), Regression Modeling Strategies With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis, 2nd edn, Springer.

Harrison, Jr, D. & Rubinfeld, D. L. (1978), ‘Hedonic housing prices and the demand for clean air’, Journal of environmental economics and management 5(1), 81-102.

He, G., Müller, H.-G. & Wang, J.-L. (2004), ‘Methods of canonical analysis for functional data’, Journal of Statistical Planning and Inference 122(1-2), 141-159.

He, X. & Shen, L. (1997), ‘Linear regression after splin transformation’, Biometrika 84(2), 474-481.

Kendall, M. G. (1938), ‘A new measure of rank correlation’, Biometrika 30, 81-89.

Pearson, K. (1920), ‘Notes on the history of correlation’, Biometrika 13, 25-45.

Ramsay, J. O. (1988), ‘Monotone regression splines in action’, Statistical science pp. 425-441.

Ranjan, C. & Najari, V. (2020), ‘Package nlcor: Compute nonlinear correlations’, ResearchGate .

Rényi, A. (1959), ‘On measures of dependence’, Acta mathematica hungarica 10(3- 4), 441-451.

Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J., Lander, E. S., Mitzenmacher, M. & Sabeti, P. C. (2011), ‘Detecting novel associations in large data sets’, Science 334(6062), 1518–1524.

Rizzo, M. L. & Székely, G. J. (2024), energy: E-statistics: Multivariate inference via the energy of data. R package version 1.7-12. https://CRAN.Rproject.org/package=energy

Santos, S. S., Takahashi, D. Y., Nakata, A. & Fujita, A. (2013), ‘A comparative study of statistical methods used to identify dependencies between gene expression signals’, Briefings in Bioinformatics 15(6), 906-918.

Sarmanov, O. (1962), ‘Maximum correlation coefficient (nonsymmetric case)’, Selected translations in mathematical statistics and probability 2, 207-210.

Schloerke, B., Cook, D., Larmarange, J., Briatte, F., Marbach, M., Thoen, E., Elberg, A. & Crowley, J. (2025), GGally: Extension to ’ggplot2’. R package version 2.4.0. https://CRAN.R-project.org/package=GGally

Spearman, C. (1904), ‘’General intelligence’, objectively determined and measured’, The American Journal of Psychology 15, 201-292.

Spector, P., Friedman, J., Tibshirani, R., Lumley, T., Garbett, S., Baron, J., Klar, B. & Chasalow, S. (2025), acepack: ACE and AVAS for Selecting Multiple Regression Transformations. R package version1.6.3.https://CRAN.Rproject.org/package=acepack

Stasinopoulos, M. D., Rigby, R. & De Bastiani, F. (2025), gamlss.prepdata: Prepering Data for Fitting a Generalized Additive Model for Location Scale and Shape. R package version 0.1.19. https://www.gamlss.com/

Székely, G. J., Rizzo, M. L. & Bakirov, N. K. (2007), ‘Measuring and testing dependence by correlation of distances’, The Annals of Statistics 35(6), 2769-2794.

Van der Laken, P. (2021), ppsr: Predictive Power Score. R package version 0.0.2. https://CRAN.R-project.org/package=ppsr

Wang, G., Lin, N. & Zhang, B. (2012), ‘Functional linear regression after spline transformation’, Computational Statistics & Data Analysis 56(3), 587-601.

Wang, T. & Zhu, L. (2018), ‘Flexible dimension reduction in regression’, Statistica Sinica pp. 1009-1029.

Wang, Y., Li, Y., Cao, H., Xiong, M., Shugart, Y. Y. & Jin, L. (2015), ‘Efficient test for nonlinear dependence of two continuous variables’, BMC bioinformatics 16, 1-8.

Yi, L. (2025), canova: CANOVA: Efficient test for nonlinear dependence of two continuous variables. R package version 0.1.0. https://github.com/liyistat/canova

Yu, Y. (2008), ‘On the maximal correlation coefficient’, Statistics & Probability Letters 78(9), 1072-1075.

How to Cite

APA

Brito, A. L., De Bastiani, F., Stasinopoulos, M. D., Rigby, R. A., Manghi, R. F. & Kneib, T. (2025). Exploring and Comparing Pairwise Nonlinear Association Measures for Continuous . Revista Colombiana de Estadística, 48(3), 509–528. https://doi.org/10.15446/rce.v48n3.123662

ACM

[1]
Brito, A.L., De Bastiani, F., Stasinopoulos, M.D., Rigby, R.A., Manghi, R.F. and Kneib, T. 2025. Exploring and Comparing Pairwise Nonlinear Association Measures for Continuous . Revista Colombiana de Estadística. 48, 3 (Dec. 2025), 509–528. DOI:https://doi.org/10.15446/rce.v48n3.123662.

ACS

(1)
Brito, A. L.; De Bastiani, F.; Stasinopoulos, M. D.; Rigby, R. A.; Manghi, R. F.; Kneib, T. Exploring and Comparing Pairwise Nonlinear Association Measures for Continuous . Rev. colomb. estad. 2025, 48, 509-528.

ABNT

BRITO, A. L.; DE BASTIANI, F.; STASINOPOULOS, M. D.; RIGBY, R. A.; MANGHI, R. F.; KNEIB, T. Exploring and Comparing Pairwise Nonlinear Association Measures for Continuous . Revista Colombiana de Estadística, [S. l.], v. 48, n. 3, p. 509–528, 2025. DOI: 10.15446/rce.v48n3.123662. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/123662. Acesso em: 24 dec. 2025.

Chicago

Brito, Alisson L., Fernanda De Bastiani, Mikis D. Stasinopoulos, Robert A. Rigby, Roberto F. Manghi, and Thomas Kneib. 2025. “Exploring and Comparing Pairwise Nonlinear Association Measures for Continuous ”. Revista Colombiana De Estadística 48 (3):509-28. https://doi.org/10.15446/rce.v48n3.123662.

Harvard

Brito, A. L., De Bastiani, F., Stasinopoulos, M. D., Rigby, R. A., Manghi, R. F. and Kneib, T. (2025) “Exploring and Comparing Pairwise Nonlinear Association Measures for Continuous ”, Revista Colombiana de Estadística, 48(3), pp. 509–528. doi: 10.15446/rce.v48n3.123662.

IEEE

[1]
A. L. Brito, F. De Bastiani, M. D. Stasinopoulos, R. A. Rigby, R. F. Manghi, and T. Kneib, “Exploring and Comparing Pairwise Nonlinear Association Measures for Continuous ”, Rev. colomb. estad., vol. 48, no. 3, pp. 509–528, Dec. 2025.

MLA

Brito, A. L., F. De Bastiani, M. D. Stasinopoulos, R. A. Rigby, R. F. Manghi, and T. Kneib. “Exploring and Comparing Pairwise Nonlinear Association Measures for Continuous ”. Revista Colombiana de Estadística, vol. 48, no. 3, Dec. 2025, pp. 509-28, doi:10.15446/rce.v48n3.123662.

Turabian

Brito, Alisson L., Fernanda De Bastiani, Mikis D. Stasinopoulos, Robert A. Rigby, Roberto F. Manghi, and Thomas Kneib. “Exploring and Comparing Pairwise Nonlinear Association Measures for Continuous ”. Revista Colombiana de Estadística 48, no. 3 (December 22, 2025): 509–528. Accessed December 24, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/123662.

Vancouver

1.
Brito AL, De Bastiani F, Stasinopoulos MD, Rigby RA, Manghi RF, Kneib T. Exploring and Comparing Pairwise Nonlinear Association Measures for Continuous . Rev. colomb. estad. [Internet]. 2025 Dec. 22 [cited 2025 Dec. 24];48(3):509-28. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/123662

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

34

Downloads

Download data is not yet available.