Published
Inverse Exponential Logistical Distribution Lehmann Type II: Application to Right Censored Data
Distribución logística exponencial inversa Lehmann tipo II: aplicación a datos censurados por la derecha
DOI:
https://doi.org/10.15446/rce.v48n3.123679Keywords:
Inverse Exponential Logistics, Lehamann's alternative, Rightcensored data, Survival analysis. (en)Alternativa de Lehmann, Análisis de supervivencia, Datos censurados por la derecha, Logística exponencial inversa. (es)
Downloads
In this article, we introduce a new continuous probability distribution called the Inverse Exponential Logistic Lehmann Type II distribution, derived from the Lehmann Type II alternative. The main objective is to apply this new distribution to survival analysis, specifically with right-censored data. We discuss various properties of the proposed distribution, including quantiles, skewness, kurtosis, moments, order statistics, and Rényi entropy. The distribution exhibits a hazard rate function with different shapes depending on the parameter values. Simulation studies were conducted to evaluate the performance of maximum likelihood estimates under a right censoring scheme. Finally, we illustrate the usefulness and flexibility of the proposed distribution by applying it to two real datasets and comparing its performance with that of other distributions.
En este artículo, presentamos una nueva distribución de probabilidad continúa denominada distribución Exponencial Inversa Logística Lehmann Tipo II, derivada de la alternativa Lehmann Tipo II. El objetivo principal es aplicar esta nueva distribución al análisis de supervivencia, específicamente con datos censurados por la derecha. Discutimos diversas propiedades de la distribución propuesta, incluyendo cuantiles, asimetría, curtosis, momentos, estadísticos de orden y entropía de Rényi. La distribución exhibe una función de riesgo con diferentes formas dependiendo de los valores de los parámetros. Se realizaron estudios de simulación para evaluar el desempeño de las estimaciones obtenidas por el método de máxima verosimilitud bajo un esquema de censura por la derecha. Finalmente, ilustramos la utilidad y flexibilidad de la distribución propuesta mediante aplicaciones a dos conjuntos de datos reales, comparando su desempeño con otras distribuciones existentes.
References
Awodutire, P. O., Nduka, E. C. & Ijomah, M. A. (2020), `Lehmann type II generalized half logistic distribution: Properties and application', Mathematical Theory and Modeling 10(2), 103-115.
Basheer, A. M. (2019), `The Marshall Olkin alpha power inverse exponential distribution: Properties and applications', Annals of Data Science 6(4), 651-663.
Chaubey, Y. P. & Zhang, R. (2015), `An extension of Chen's family of survival distributions with bathtub shape or increasing hazard rate function', Communications in Statistics Theory and Methods 44(19), 4049-4064.
Chaudhary, A. K. & Kumar, V. (2020), `Logistic inverse exponential distribution with properties and applications', International Journal of Mathematics Trends and Technology 66(10), 151-162.
Eghwerido, J. T., Nzei, L. C. & Zelibe, S. C. (2022), `The alpha power extended generalized exponential distribution', Journal of Statistics and Management Systems 25(1), 187-210.
Fallah, A. & Kazemi, R. (2020), `Statistical inference for the generalized weighted exponential distribution', Communications in Statistics Simulation and Computation 51(4), 1121-1138.
George, R. & Thobias, S. (2019), `Kumaraswamy Marshall Olkin exponential distribution', Communications in Statistics Theory and Methods 48(8), 1920-1937.
Ikechukwu, A. F. & Eghwerido, J. T. (2022), `Transmuted shifted exponential distribution and applications', Journal of Statistics and Management Systems 25(4), 629-650.
Keller, A. Z., Kamath, A. R. R. & Perera, U. D. (1982), `Reliability analysis of CNC machine tools', Reliability Engineering 3(6), 449-473.
Kenney, J. F. & Keeping, E. S. (1962), Mathematics of Statistics, Part 1, 3 edn, Van Nostrand, Princeton, NJ.
Mansoor, M., Tahir, M. H., Cordeiro, G. M., Provost, S. B. & Alzaatreh, A. (2019), `The Marshall-Olkin logistic exponential distribution', Communications in Statistics Theory and Methods 48(2), 220-234.
Moors, J. J. A. (1988), `A quantile alternative for kurtosis', Journal of the Royal Statistical Society: Series D (The Statistician) 37(1), 25-32.
Nassar, M., Kumar, D., Dey, S., Cordeiro, G. M. & Afify, A. Z. (2019), `The Marshall-Olkin alpha power family of distributions with applications', Journal of Computational and Applied Mathematics 351, 41-53.
Nelder, J. A. & Mead, R. (1965), `A simplex method for function minimization', The Computer Journal 7(4), 308-313.
Ogunde, A. A., Fayose, S. T., Ajayi, B. & Omosigho, D. O. (2020), `Extended Gumbel type-II distribution: Properties and applications', Journal of Applied Mathematics 2020, 1-15.
Ogunde, A. A., Olalude, G. A., Adeniji, O. E. & Balogun, K. (2021), `Lehmann type II Fréchet-Poisson distribution: Properties, inference and applications as a lifetime distribution', International Journal of Statistics and Probability 10(3), 1-8.
Okorie, I. E., Akpanta, A. C., Ohakwe, J., Chikezie, D. C., Onyemachi, C. U. & Obi, E. O. (2017), `The adjusted log-logistic generalized exponential distribution with application to lifetime data', International Journal of Statistics and Probability 6(4), 1-16.
R Core Team (2025), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. https://www.R-pro ject.org/
Rényi, A. (1961), On measures of entropy and information, in `Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability', Vol. 1, University of California Press, pp. 547-561.
Shannon, C. E. (1948), `A mathematical theory of communication', The Bell System Technical Journal 27(3), 379-423.
Sobhi, A. L. & Mashail, M. (2020), `The inverse-power logistic-exponential distribution: Properties, estimation methods, and application to insurance data', Mathematics 8(11), 2060.
Therneau, T. M. (2023), A Package for Survival Analysis in R. R package version 3.5-3. https://CRAN.R-project.org/package=survival
Tomazella, V. L. D., Ramos, P. L., Ferreira, P. H., Mota, A. L. & Louzada, F. (2020), `The Lehmann type II inverse Weibull distribution in the presence of censored data', Communications in Statistics - Simulation and Computation 51(5), 2424-2440.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






