Published

2025-12-01

Inverse Exponential Logistical Distribution Lehmann Type II: Application to Right Censored Data

Distribución logística exponencial inversa Lehmann tipo II: aplicación a datos censurados por la derecha

DOI:

https://doi.org/10.15446/rce.v48n3.123679

Keywords:

Inverse Exponential Logistics, Lehamann's alternative, Rightcensored data, Survival analysis. (en)
Alternativa de Lehmann, Análisis de supervivencia, Datos censurados por la derecha, Logística exponencial inversa. (es)

Downloads

Authors

  • Gualberto Agamez Montalvo Universidad Federal do Ceará https://orcid.org/0000-0001-8561-8843
  • Daniel Filho Universidade Federal do Ceará
  • Keyliane Travassos Universidade Federal do Ceará
  • João Mota Universidade Federal do Ceará

In this article, we introduce a new continuous probability distribution called the Inverse Exponential Logistic Lehmann Type II distribution, derived from the Lehmann Type II alternative. The main objective is to apply this new distribution to survival analysis, specifically with right-censored data. We discuss various properties of the proposed distribution, including quantiles, skewness, kurtosis, moments, order statistics, and Rényi entropy. The distribution exhibits a hazard rate function with different shapes depending on the parameter values. Simulation studies were conducted to evaluate the performance of maximum likelihood estimates under a right censoring scheme. Finally, we illustrate the usefulness and flexibility of the proposed distribution by applying it to two real datasets and comparing its performance with that of other distributions.

En este artículo, presentamos una nueva distribución de probabilidad continúa denominada distribución Exponencial Inversa Logística Lehmann Tipo II, derivada de la alternativa Lehmann Tipo II. El objetivo principal es aplicar esta nueva distribución al análisis de supervivencia, específicamente con datos censurados por la derecha. Discutimos diversas propiedades de la distribución propuesta, incluyendo cuantiles, asimetría, curtosis, momentos, estadísticos de orden y entropía de Rényi. La distribución exhibe una función de riesgo con diferentes formas dependiendo de los valores de los parámetros. Se realizaron estudios de simulación para evaluar el desempeño de las estimaciones obtenidas por el método de máxima verosimilitud bajo un esquema de censura por la derecha. Finalmente, ilustramos la utilidad y flexibilidad de la distribución propuesta mediante aplicaciones a dos conjuntos de datos reales, comparando su desempeño con otras distribuciones existentes.

References

Awodutire, P. O., Nduka, E. C. & Ijomah, M. A. (2020), `Lehmann type II generalized half logistic distribution: Properties and application', Mathematical Theory and Modeling 10(2), 103-115.

Basheer, A. M. (2019), `The Marshall Olkin alpha power inverse exponential distribution: Properties and applications', Annals of Data Science 6(4), 651-663.

Chaubey, Y. P. & Zhang, R. (2015), `An extension of Chen's family of survival distributions with bathtub shape or increasing hazard rate function', Communications in Statistics Theory and Methods 44(19), 4049-4064.

Chaudhary, A. K. & Kumar, V. (2020), `Logistic inverse exponential distribution with properties and applications', International Journal of Mathematics Trends and Technology 66(10), 151-162.

Eghwerido, J. T., Nzei, L. C. & Zelibe, S. C. (2022), `The alpha power extended generalized exponential distribution', Journal of Statistics and Management Systems 25(1), 187-210.

Fallah, A. & Kazemi, R. (2020), `Statistical inference for the generalized weighted exponential distribution', Communications in Statistics Simulation and Computation 51(4), 1121-1138.

George, R. & Thobias, S. (2019), `Kumaraswamy Marshall Olkin exponential distribution', Communications in Statistics Theory and Methods 48(8), 1920-1937.

Ikechukwu, A. F. & Eghwerido, J. T. (2022), `Transmuted shifted exponential distribution and applications', Journal of Statistics and Management Systems 25(4), 629-650.

Keller, A. Z., Kamath, A. R. R. & Perera, U. D. (1982), `Reliability analysis of CNC machine tools', Reliability Engineering 3(6), 449-473.

Kenney, J. F. & Keeping, E. S. (1962), Mathematics of Statistics, Part 1, 3 edn, Van Nostrand, Princeton, NJ.

Mansoor, M., Tahir, M. H., Cordeiro, G. M., Provost, S. B. & Alzaatreh, A. (2019), `The Marshall-Olkin logistic exponential distribution', Communications in Statistics Theory and Methods 48(2), 220-234.

Moors, J. J. A. (1988), `A quantile alternative for kurtosis', Journal of the Royal Statistical Society: Series D (The Statistician) 37(1), 25-32.

Nassar, M., Kumar, D., Dey, S., Cordeiro, G. M. & Afify, A. Z. (2019), `The Marshall-Olkin alpha power family of distributions with applications', Journal of Computational and Applied Mathematics 351, 41-53.

Nelder, J. A. & Mead, R. (1965), `A simplex method for function minimization', The Computer Journal 7(4), 308-313.

Ogunde, A. A., Fayose, S. T., Ajayi, B. & Omosigho, D. O. (2020), `Extended Gumbel type-II distribution: Properties and applications', Journal of Applied Mathematics 2020, 1-15.

Ogunde, A. A., Olalude, G. A., Adeniji, O. E. & Balogun, K. (2021), `Lehmann type II Fréchet-Poisson distribution: Properties, inference and applications as a lifetime distribution', International Journal of Statistics and Probability 10(3), 1-8.

Okorie, I. E., Akpanta, A. C., Ohakwe, J., Chikezie, D. C., Onyemachi, C. U. & Obi, E. O. (2017), `The adjusted log-logistic generalized exponential distribution with application to lifetime data', International Journal of Statistics and Probability 6(4), 1-16.

R Core Team (2025), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. https://www.R-pro ject.org/

Rényi, A. (1961), On measures of entropy and information, in `Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability', Vol. 1, University of California Press, pp. 547-561.

Shannon, C. E. (1948), `A mathematical theory of communication', The Bell System Technical Journal 27(3), 379-423.

Sobhi, A. L. & Mashail, M. (2020), `The inverse-power logistic-exponential distribution: Properties, estimation methods, and application to insurance data', Mathematics 8(11), 2060.

Therneau, T. M. (2023), A Package for Survival Analysis in R. R package version 3.5-3. https://CRAN.R-project.org/package=survival

Tomazella, V. L. D., Ramos, P. L., Ferreira, P. H., Mota, A. L. & Louzada, F. (2020), `The Lehmann type II inverse Weibull distribution in the presence of censored data', Communications in Statistics - Simulation and Computation 51(5), 2424-2440.

How to Cite

APA

Agamez Montalvo, G., Filho, D., Travassos, K. & Mota, J. (2025). Inverse Exponential Logistical Distribution Lehmann Type II: Application to Right Censored Data. Revista Colombiana de Estadística, 48(3), 301–318. https://doi.org/10.15446/rce.v48n3.123679

ACM

[1]
Agamez Montalvo, G., Filho, D., Travassos, K. and Mota, J. 2025. Inverse Exponential Logistical Distribution Lehmann Type II: Application to Right Censored Data. Revista Colombiana de Estadística. 48, 3 (Dec. 2025), 301–318. DOI:https://doi.org/10.15446/rce.v48n3.123679.

ACS

(1)
Agamez Montalvo, G.; Filho, D.; Travassos, K.; Mota, J. Inverse Exponential Logistical Distribution Lehmann Type II: Application to Right Censored Data. Rev. colomb. estad. 2025, 48, 301-318.

ABNT

AGAMEZ MONTALVO, G.; FILHO, D.; TRAVASSOS, K.; MOTA, J. Inverse Exponential Logistical Distribution Lehmann Type II: Application to Right Censored Data. Revista Colombiana de Estadística, [S. l.], v. 48, n. 3, p. 301–318, 2025. DOI: 10.15446/rce.v48n3.123679. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/123679. Acesso em: 24 dec. 2025.

Chicago

Agamez Montalvo, Gualberto, Daniel Filho, Keyliane Travassos, and João Mota. 2025. “Inverse Exponential Logistical Distribution Lehmann Type II: Application to Right Censored Data”. Revista Colombiana De Estadística 48 (3):301-18. https://doi.org/10.15446/rce.v48n3.123679.

Harvard

Agamez Montalvo, G., Filho, D., Travassos, K. and Mota, J. (2025) “Inverse Exponential Logistical Distribution Lehmann Type II: Application to Right Censored Data”, Revista Colombiana de Estadística, 48(3), pp. 301–318. doi: 10.15446/rce.v48n3.123679.

IEEE

[1]
G. Agamez Montalvo, D. Filho, K. Travassos, and J. Mota, “Inverse Exponential Logistical Distribution Lehmann Type II: Application to Right Censored Data”, Rev. colomb. estad., vol. 48, no. 3, pp. 301–318, Dec. 2025.

MLA

Agamez Montalvo, G., D. Filho, K. Travassos, and J. Mota. “Inverse Exponential Logistical Distribution Lehmann Type II: Application to Right Censored Data”. Revista Colombiana de Estadística, vol. 48, no. 3, Dec. 2025, pp. 301-18, doi:10.15446/rce.v48n3.123679.

Turabian

Agamez Montalvo, Gualberto, Daniel Filho, Keyliane Travassos, and João Mota. “Inverse Exponential Logistical Distribution Lehmann Type II: Application to Right Censored Data”. Revista Colombiana de Estadística 48, no. 3 (December 22, 2025): 301–318. Accessed December 24, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/123679.

Vancouver

1.
Agamez Montalvo G, Filho D, Travassos K, Mota J. Inverse Exponential Logistical Distribution Lehmann Type II: Application to Right Censored Data. Rev. colomb. estad. [Internet]. 2025 Dec. 22 [cited 2025 Dec. 24];48(3):301-18. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/123679

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

22

Downloads

Download data is not yet available.