Published
DETECCIÓN GRÁFICA DE LA MULTICOLINEALIDAD MEDIANTE EL H-PLOT DE LA INVERSA DE LA MATRIZ DE CORRELACIONES
MULTICOLINEARITY DETECTION BY MEANS OF THE h-PLOT OF THE CORRELATION MATRIX INVERSE
Keywords:
Multicolinealidad, h-plot, correlación parcial, coeficiente de inflación de varianza (es)Multicollinearity, h-plot, partial correlation, variance inflation factor (en)
Downloads
1Profesor Titular, Postgrado en estadística, Universidad Central de Venezuela (UCV), E-Mail:guiram@cantv.net
2Profesor Titular, Postgrado en estadística, Universidad Central de Venezuela, (UCV), E-Mail: mauravasquez@cantv.net
3Profesor Titular, Postgrado en estadística, Universidad Central de Venezuela (UCV), E-Mail:acamar@reacciun.ve
4Profesor Titular, Instituto de Investigaciones Económicas y Sociales, UCV, E-Mail: mariusa@telcel.net
5Profesor Titular, Departamento de Estadística y Matemática Aplicadas, Universidad de Salamanca, E-Mail: pgalindo@aida.usal.es
La multicolinealidad origina imprecisión en los estimadores de los coefi cientes de un modelo lineal. En este trabajo proponemos un gráfico basado en la representación h-plot de la inversa de la matriz de correlaciones, que permite visualizar con cierto grado de aproximación las relaciones lineales entre las variables predictoras. En este dispositivo se obtienen representacio nes aproximadas de los coeficientes de inflación de varianza de cada variable y de las correlaciones parciales entre ellas. Con el objeto de ilustrar el méto do, éste se aplicó en una investigación sobre la caracterización morfológica de jóvenes nadadores venezolanos.
Palabras Clave: Multicolinealidad, h-plot, correlación parcial, coeficiente de inflación de varianza.
Multicollinearity generates imprecision in the estimates of the coefficients in linear models. We propose to use the h-plot of the inverse of the corre lation matrix to obtain a representation of the linear relations between the predictor variables. In the resulting plot the variance inflation factor of each variable and the partial correlation between them area roughly displayed. In order to illustrate the method it was applied in an anthropometric study of young Venezuelan swimmers.
Keywords: Multicollinearity, h-plot, partial correlation, variance inflation factor.
Texto completo disponible en PDF
Referencias
1. Belsley, D. (1991), Conditioning Diagnostics, Collinearity and Weak Data in Re gression, Wiley, New York.
2. Cornsten, L. & Gabriel, K. (1976), "Graphical exploration in comparing variance matrices",Biometrics 32(851-863).
3. Farrar, D. & Glauber, R. (1967), "Multicollinearity in regression analysis: The problem revisited", Review of Economic Statistics 49, 92-107.
4. Gabriel, K. (1971), "The biplot graphic display of matrices with application to principal component analysis, Biometrika 58, 453-467.
5. Glantz, S. & Slinker, B. (2001), Primer of Applied Regression and Analysis of Variance, McGraw-Hill, New York.
6. Gleason, T. & Staelin, R. (1975), "A proposal for handling missing data", Psycho metrika 40, 229-252.
7. Jackson, J. (1991), A User"s Guide to Principal Components, Wiley, New York.
8. Kendall, M. (1957), A Course in Multivariate Analysis, Griffin, London.
9. Mandell, J. (1982), "Use of the singular value decomposition in regression analysis", The American Statistician 36(1), 15-24.
10. Mason, R., Gunst, R. & Webster, J. (1975), "Regression analysis and the problem of multicollinearity", Communications in Statistics 4, 277-292.
11. Pérez, B., Vásquez, M., Tomei, C., Landaeta, M. & Ramírez, G. (2004), Anthropometrics characteristics of young venezuelan male swimmers according with biological maturity status, International Congress of Auxology, Florencia, Italia.
12. Raveh, A. (1985), "On the use of the inverse of the correlation matrix in multivariate data analysis", The American Statistician 39(1), 39-42.
13. Silvey, S. (1969), "Multicollinearity and imprecise estimation", Journal of the Royal Statistical Society Series B(31), 751-754.
14. Whitakker, J. (1990),Graphical Models in Applied Multivariate Analysis, Wiley, New York.
15. Yu, C. (1998), Multi-collinearity, variance inflation and orthogonalization in regression.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2005 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).