Published
MÉTODOS NUMÉRICOS PARA LA ESTIMACIÓN DE PARÁMETROS EN REGRESIÓN CUANTÍLICA
NUMERICAL METHODS TO ESTIMATE PARAMETERS IN QUANTILE REGRESSION
Keywords:
regresión cuantílica, optimización lineal, optimización no diferenciable, planos de corte (es)quantile regression, linear programming, nondifferentiable optimization, cutting planes (en)
Downloads
1Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, E-mail: hmmorae@unal.edu.co
La regresión cuantílica es un problema de optimización convexa no diferenciable. Se examinan las ventajas y desventajas con relación a la necesidad de recursos de memoria y tiempo de cálculo de tres métodos clásicos de solución: dos de optimización lineal y el método de planos de corte.
Palabras Clave: regresión cuantílica, optimización lineal, optimización no diferenciable, planos de corte.
Quantile regression is a nondifferentiable convex optimization problem. We compare three classical numerical methods, two of them based on linear optimization, and the cutting plane method. We compare them by their re quired memory and computing time.
Keywords: quantile regression, linear programming, nondifferentiable optimization, cutting planes.
Texto completo disponible en PDF
Referencias
1. Cade, B. & Noon, B. (2003), "A Gentle Introduction to Quantile Regression for Ecologists", Frontiers in Ecology and the Environment 1(8), 412-420.
2. Cheney, E. & Goldstein, A. (1959), "Newton"s Method for Convex Programming ans Tchebycheff Approximations", Numerische Mathematik (1), 253-268.
3. Du Merle, O. (1995), Points intérieurs et plans coupants : mise en oeuvre et développement d"une méthode pour l"optimisation convexe et la programmation linéaire structurée de grand taille, PhD thesis, Universidad de Ginebra.
4. Fitzenberger, B., Koenker, R. & Machado, J. (2002), Economic Applications of Quantile Regression, Physica-Verlag, Heidelberg.
5. Goffin, J., Haurie, A. & Vial, J. (1992), "Decomposition and Nondifferentiable Optimization with the Projective Algorithm", Management Science 38(2), 284-302.
6. Kelley, J. (1960), "The Cutting Plane Method for Convex Problems", J. SIAM (8), 703-712.
7. Koenker, R. & Basset, G. J. (1978), "Regression Quantiles", Econometrica 46(1), 33-50.
8. Sagastizábal, C. (1997), Optimisation non Differérentiable en Bonnans J.F. et al., Optimisation Numérique, Springer, Paris.
9. Silva, M.A. Arenales, M. (2000), "Uma extensão do método simplex para a resolucão do problema de regressão quantil", Rev. Mat. Est., São Paulo (18), 125-144.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2005 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).