Published

2008-01-01

TEST DE HIPÓTESIS PARA CONTRASTAR LA IGUALDAD ENTRE K-POBLACIONES

HYPOTHESIS TEST TO COMPARE THE EQUALITY AMONG K-POPULATIONS

Keywords:

Estimación kernel, medida L1, selección del parámetro ventana, bootstrap (es)
Kernel density estimation, L1 Measure, Bandwidth selection, Bootstrap (en)

Authors

  • Pablo Martínez-Camblor Agrocampus Ouest
Este trabajo estudia las ventajas y limitaciones de un test para contrastar la igualdad de las distribuciones de origen de k-muestras independientes. El estadístico propuesto, denominado LGk, está basado en una medida que generaliza la norma L1 entre funciones de densidad y que permite comparar simultáneamente k densidades. Desde esta medida y a partir de la estimación kernel, se desarrolla un test para contrastes de igualdad entre k poblaciones independientes (LGk). A partir de un “amplio” estudio de simulación, se estudia la potencia del test propuesto y se compara con algunos de los test no paramétricos ya existentes, considerando ocho estadísticos diferentes. También se analiza el tema de la elección del tamaño del parámetro ventana y se realizan algunas propuestas relativas a este problema.
In this paper we study a test to contrast the equality among the origen distributions of k-independent samples. The proposed statistic, denoted as LGk, is based in a measure which generalizes the L1-norm among density functions and it allows us to compare k-different densities. From this measure and the kernel density estimation, a k-sample test for independent populations is developed. We make a wide simulation study for the proposed test and we compare its power with other nonparametric k-sample test, by considering a total of eight different statistics. We also analyze the topic of the bandwidth selection and make the same proposals about this problem.

Test de hipótesis para contrastar la igualdad entre k-poblaciones

Hypothesis Test to Compare the Equality Among k-populations

PABLO MARTÍNEZ-CAMBLOR1

1Fundación Caubet-Cimera Illes Balears, Mallorca, España. Programa de epidemiología e investigación clínica. Email: martinez@caubet-cimera.es


Resumen

Este trabajo estudia las ventajas y limitaciones de un test para contrastar la igualdad de las distribuciones de origen de k-muestras independientes. El estadístico propuesto, denominado LGk, está basado en una medida que generaliza la norma L1 entre funciones de densidad y que permite comparar simultáneamente k densidades. Desde esta medida y a partir de la estimación kernel, se desarrolla un test para contrastes de igualdad entre k poblaciones independientes (LGk). A partir de un "amplio" estudio de simulación, se estudia la potencia del test propuesto y se compara con algunos de los test no paramétricos ya existentes, considerando ocho estadísticos diferentes. También se analiza el tema de la elección del tamaño del parámetro ventana y se realizan algunas propuestas relativas a este problema.

Palabras clave: estimación kernel, medida L1, selección del parámetro ventana, bootstrap.


Abstract

In this paper we study a test to contrast the equality among the origen distributions of k-independent samples. The proposed statistic, denoted as LGk, is based in a measure which generalizes the L1-norm among density functions and it allows us to compare k-different densities. From this measure and the kernel density estimation, a k-sample test for independent populations is developed. We make a wide simulation study for the proposed test and we compare its power with other nonparametric k-sample test, by considering a total of eight different statistics. We also analyze the topic of the bandwidth selection and make the same proposals about this problem.

Key words: Kernel density estimation, L1 Measure, Bandwidth selection, Bootstrap.


Texto completo disponible en PDF


Referencias

1. Anderson, N. H., Hall, P. & Titterington, D. M. (1994), `Two-Sample Test Statistics for Measuring Discrepancies Between Two Multivariate Probability Density Functions using Kernel-Based Density Estimates´, Journal of Multivariate Analysis 50, 41-54.

2. Cao, R. & Van Keilegom, I. (2006), `Empirical Likelihood Tests for Two-Sample Problems via Nonparametric Density Estimation´, Canad. J. Statist. 34, 61-77.

3. Conover, W. J. (1965), `Several k-sample Kolmogorov-Smirnov tests´, Annals of Math. Statistics 36, 1019-1026.

4. Devroye, L. & Gyorfi, L. (1985), Nonparametric Density Estimation. The L1-View, Wiley, New York, United States.

5. Hall, P., DiCiccio, J. T. & Romano, J. P. (1989), `On Smoothing and the Bootstrap´, Annals of Statistics 17(2), 692-704.

6. Horvath, L. (1991), `On L_p-Norms of Multivariate Density Estimations´, Annals of Statistics 19(4), 1933-1949.

7. Kiefer, J. (1959), `K-Sample Analogues of the Kolmogorov-Smirnov, Cramér-Von Mises Test´, Ann. Math. Statist. 30, 420-447.

8. Kruskal, W. H. & Wallis, W. A. (1952), `Use of Ranks in One-Criterion Variance Analysis´, Journal of the American Statistical Association 47(260), 583-621.

9. Lewis, J. L. (1972), `A k-Sample Test Based on Range Intervals´, Biometrika 59(1), 155-160.

10. Nadaraya, E. A. (1964), `Some new Estimates for Distribution Functions´, Theory Prob. Appl. 9, 497-500.

11. R Development Core Team, (2007), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org

12. Rosenblatt, M. (1956), `Remarks on Some nonparametric Estimates of a Density Functions´, Annals Math. Statistics 27, 832-837.

13. Scholz, F. W. & Stephens, M. A. (1987), `K-Samples Anderson-Darling Test´, J. Amer. Statist. Assoc. 82, 918-924.

14. Silverman, B. W. (1986), Density Estimation for Statistics and Data Analysis, Chapman & Hall, London, United Kingdom.

15. Wand, M. P. & Jones, M. C. (1995), Kernel Smoothing, Chapman & Hall, London, United Kingdom.

16. Zhang, J. & Wu, Y. (2007), `K-Sample Tests Based on the Likelihood Ratio´, Comput. Stat. Data Anal. 51(9), 4682-4691.


[Recibido en junio de 2007. Aceptado en agosto de 2007]

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCEv31n1a01,
    AUTHOR  = {Martínez-Camblor, Pablo},
    TITLE   = {{Test de hipótesis para contrastar la igualdad entre k-poblaciones}},
    JOURNAL = {Revista Colombiana de Estadística},
    YEAR    = {2008},
    volume  = {31},
    number  = {1},
    pages   = {1-18}
}

How to Cite

APA

Martínez-Camblor, P. (2008). TEST DE HIPÓTESIS PARA CONTRASTAR LA IGUALDAD ENTRE K-POBLACIONES. Revista Colombiana de Estadística, 31(1), 1–18. https://revistas.unal.edu.co/index.php/estad/article/view/29585

ACM

[1]
Martínez-Camblor, P. 2008. TEST DE HIPÓTESIS PARA CONTRASTAR LA IGUALDAD ENTRE K-POBLACIONES. Revista Colombiana de Estadística. 31, 1 (Jan. 2008), 1–18.

ACS

(1)
Martínez-Camblor, P. TEST DE HIPÓTESIS PARA CONTRASTAR LA IGUALDAD ENTRE K-POBLACIONES. Rev. colomb. estad. 2008, 31, 1-18.

ABNT

MARTÍNEZ-CAMBLOR, P. TEST DE HIPÓTESIS PARA CONTRASTAR LA IGUALDAD ENTRE K-POBLACIONES. Revista Colombiana de Estadística, [S. l.], v. 31, n. 1, p. 1–18, 2008. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/29585. Acesso em: 17 nov. 2025.

Chicago

Martínez-Camblor, Pablo. 2008. “TEST DE HIPÓTESIS PARA CONTRASTAR LA IGUALDAD ENTRE K-POBLACIONES”. Revista Colombiana De Estadística 31 (1):1-18. https://revistas.unal.edu.co/index.php/estad/article/view/29585.

Harvard

Martínez-Camblor, P. (2008) “TEST DE HIPÓTESIS PARA CONTRASTAR LA IGUALDAD ENTRE K-POBLACIONES”, Revista Colombiana de Estadística, 31(1), pp. 1–18. Available at: https://revistas.unal.edu.co/index.php/estad/article/view/29585 (Accessed: 17 November 2025).

IEEE

[1]
P. Martínez-Camblor, “TEST DE HIPÓTESIS PARA CONTRASTAR LA IGUALDAD ENTRE K-POBLACIONES”, Rev. colomb. estad., vol. 31, no. 1, pp. 1–18, Jan. 2008.

MLA

Martínez-Camblor, P. “TEST DE HIPÓTESIS PARA CONTRASTAR LA IGUALDAD ENTRE K-POBLACIONES”. Revista Colombiana de Estadística, vol. 31, no. 1, Jan. 2008, pp. 1-18, https://revistas.unal.edu.co/index.php/estad/article/view/29585.

Turabian

Martínez-Camblor, Pablo. “TEST DE HIPÓTESIS PARA CONTRASTAR LA IGUALDAD ENTRE K-POBLACIONES”. Revista Colombiana de Estadística 31, no. 1 (January 1, 2008): 1–18. Accessed November 17, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/29585.

Vancouver

1.
Martínez-Camblor P. TEST DE HIPÓTESIS PARA CONTRASTAR LA IGUALDAD ENTRE K-POBLACIONES. Rev. colomb. estad. [Internet]. 2008 Jan. 1 [cited 2025 Nov. 17];31(1):1-18. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/29585

Download Citation

Article abstract page views

298

Downloads

Download data is not yet available.