Published
TEST DE HIPÓTESIS PARA CONTRASTAR LA IGUALDAD ENTRE K-POBLACIONES
HYPOTHESIS TEST TO COMPARE THE EQUALITY AMONG K-POPULATIONS
Keywords:
Estimación kernel, medida L1, selección del parámetro ventana, bootstrap (es)Kernel density estimation, L1 Measure, Bandwidth selection, Bootstrap (en)
Downloads
1Fundación Caubet-Cimera Illes Balears, Mallorca, España. Programa de epidemiología e investigación clínica. Email: martinez@caubet-cimera.es
Este trabajo estudia las ventajas y limitaciones de un test para contrastar la igualdad de las distribuciones de origen de k-muestras independientes. El estadístico propuesto, denominado LGk, está basado en una medida que generaliza la norma L1 entre funciones de densidad y que permite comparar simultáneamente k densidades. Desde esta medida y a partir de la estimación kernel, se desarrolla un test para contrastes de igualdad entre k poblaciones independientes (LGk). A partir de un "amplio" estudio de simulación, se estudia la potencia del test propuesto y se compara con algunos de los test no paramétricos ya existentes, considerando ocho estadísticos diferentes. También se analiza el tema de la elección del tamaño del parámetro ventana y se realizan algunas propuestas relativas a este problema.
Palabras clave: estimación kernel, medida L1, selección del parámetro ventana, bootstrap.
In this paper we study a test to contrast the equality among the origen distributions of k-independent samples. The proposed statistic, denoted as LGk, is based in a measure which generalizes the L1-norm among density functions and it allows us to compare k-different densities. From this measure and the kernel density estimation, a k-sample test for independent populations is developed. We make a wide simulation study for the proposed test and we compare its power with other nonparametric k-sample test, by considering a total of eight different statistics. We also analyze the topic of the bandwidth selection and make the same proposals about this problem.
Key words: Kernel density estimation, L1 Measure, Bandwidth selection, Bootstrap.
Texto completo disponible en PDF
Referencias
1. Anderson, N. H., Hall, P. & Titterington, D. M. (1994), `Two-Sample Test Statistics for Measuring Discrepancies Between Two Multivariate Probability Density Functions using Kernel-Based Density Estimates´, Journal of Multivariate Analysis 50, 41-54.
2. Cao, R. & Van Keilegom, I. (2006), `Empirical Likelihood Tests for Two-Sample Problems via Nonparametric Density Estimation´, Canad. J. Statist. 34, 61-77.
3. Conover, W. J. (1965), `Several k-sample Kolmogorov-Smirnov tests´, Annals of Math. Statistics 36, 1019-1026.
4. Devroye, L. & Gyorfi, L. (1985), Nonparametric Density Estimation. The L1-View, Wiley, New York, United States.
5. Hall, P., DiCiccio, J. T. & Romano, J. P. (1989), `On Smoothing and the Bootstrap´, Annals of Statistics 17(2), 692-704.
6. Horvath, L. (1991), `On L_p-Norms of Multivariate Density Estimations´, Annals of Statistics 19(4), 1933-1949.
7. Kiefer, J. (1959), `K-Sample Analogues of the Kolmogorov-Smirnov, Cramér-Von Mises Test´, Ann. Math. Statist. 30, 420-447.
8. Kruskal, W. H. & Wallis, W. A. (1952), `Use of Ranks in One-Criterion Variance Analysis´, Journal of the American Statistical Association 47(260), 583-621.
9. Lewis, J. L. (1972), `A k-Sample Test Based on Range Intervals´, Biometrika 59(1), 155-160.
10. Nadaraya, E. A. (1964), `Some new Estimates for Distribution Functions´, Theory Prob. Appl. 9, 497-500.
11. R Development Core Team, (2007), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org
12. Rosenblatt, M. (1956), `Remarks on Some nonparametric Estimates of a Density Functions´, Annals Math. Statistics 27, 832-837.
13. Scholz, F. W. & Stephens, M. A. (1987), `K-Samples Anderson-Darling Test´, J. Amer. Statist. Assoc. 82, 918-924.
14. Silverman, B. W. (1986), Density Estimation for Statistics and Data Analysis, Chapman & Hall, London, United Kingdom.
15. Wand, M. P. & Jones, M. C. (1995), Kernel Smoothing, Chapman & Hall, London, United Kingdom.
16. Zhang, J. & Wu, Y. (2007), `K-Sample Tests Based on the Likelihood Ratio´, Comput. Stat. Data Anal. 51(9), 4682-4691.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv31n1a01,
AUTHOR = {Martínez-Camblor, Pablo},
TITLE = {{Test de hipótesis para contrastar la igualdad entre k-poblaciones}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2008},
volume = {31},
number = {1},
pages = {1-18}
}
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2008 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






