Published
ANÁLISIS BAYESIANO EN PRESENCIA DE COVARIABLES PARA DATOS DE SOBREVIVENCIA MULTIVARIADOS: UN EJEMPLO DE APLICACIÓN
A BAYESIAN ANALYSIS IN THE PRESENCE OF COVARIATES FOR MULTIVARIATE SURVIVAL DATA: AN EXAMPLE OF APPLICATION
Keywords:
distribución bivariada, distribución de sobrevivencia, distribución Weibull, métodos bayesianos, métodos MCMC (es)Bayesian methods, Bivariate distribution, MCMC methods, Survival distribution, Weibull distribution (en)
Downloads
1UEM - Universidade Estadual de Maringá, Centro de Ciências Exatas, Departamento de Estatística, Maringá-PR, Brasil. Adjoint professor. Email:casantos@uem.br
2USP - Universidade de São Paulo, FMRP - Faculdade de Medicina de Ribeirão Preto, Departamento de Medicina Social, Ribeirão Preto-SP, Brasil. Professor. Email: jorge.achcar@pq.cnpq.br
In this paper, we introduce a Bayesian analysis for survival multivariate data in the presence of a covariate vector and censored observations. Different "frailties" or latent variables are considered to capture the correlation among the survival times for the same individual. We assume Weibull or generalized Gamma distributions considering right censored lifetime data. We develop the Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods.
Key words: Bayesian methods, Bivariate distribution, MCMC methods, Survivaldistribution, Weibull distribution.
En este artículo, se introduce un análisis bayesiano para datos multivariados de sobrevivencia en presencia de un vector de covariables y observaciones censuradas. Diferentes "fragilidades" o variables latentes son consideradas para capturar la correlación entre los tiempos de sobrevivencia para un mismo individuo. Asumimos distribuciones Weibull o Gamma generalizadas considerando datos de tiempo de vida a derecha. Desarrollamos el análisis bayesiano usando métodos Markov Chain Monte Carlo (MCMC).
Palabras clave: distribución bivariada, distribución de sobrevivencia, distribución Weibull, métodos bayesianos, métodos MCMC.
Texto completo disponible en PDF
References
1. Chib, S. & Greenberg, E. (1995), `Understanding the Metropolis-Hastings algorithm´, The American Statistician(49), 327-335.
2. Clayton, D. (1991), `A Monte Carlo Method for Bayesian inference in frailty models´, Biometrics(47), 467-485.
3. Clayton, D. & Cuzick, J. (1985), `Multivariate generalizations of the proportional hazards model´, Journal of the Royal Statistical Society A(148), 82-117.
4. Cox, D. R. (1972), `Regression models and life tables´, Journal of the Royal Statistical Society B(34), 187-220.
5. Cox, D. R. & Oakes, D. (1984), Analysis of Survival Data, Chapman & Hall, London.
6. Gelfand, A. E. & Smith, A. F. M. (1990), `Sampling based approaches to calculating marginal densities´, Journal of the American Statistical Association(85), 398-409.
7. Gelman, A. & Rubin, D. B. (1992), `Inference from iterative simulation using multiple sequences (with discussion)´, Statistical Science 7(4), 457-472.
8. Hager, H. W. & Bain, L. J. (1970), `Inferential procedures for the generalized gamma distribution´, Journal of the American Statistical Association(65), 1601-1609.
9. Kalbfleisch, J. D. (1978), `Nonparametric Bayesian analysis of survival time data´, Journal of the Royal Statistical Society B(40), 214-221.
10. McGilchrist, C. A. & Aisbett, C. W. (1991), `Regression with frailty in survival analysis´, Biometrics(47), 461-466.
11. Oakes, D. (1986), `Semiparametric inference in a model for association in bivariate survival data´, Biometrika73, 353-361.
12. Oakes, D. (1989), `Bivariate survival models induced by frailties´, Journal of the American Statistical Association 84, 487-493.
13. Parr, V. B. & Webster, J. T. (1965), `A method for discriminating between failure density functions used in reliability predictions´, Technometrics(7), 1-10.
14. Shih, J. A. & Louis, T. A. (1992), Models and analysis for multivariate failure time data, Technical Report , Division of Biostatistics, University of Minnesota.
15. Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van der Linde, A. (2002), `Bayesian measures of model complexity and fit (with discussion)´, Journal of the Royal Statistical Society B(64), 583-639.
16. Spiegelhalter, D. J., Thomas, A., Best, N. G. & Lunn, D. (2003), WinBugs version 1.4 user manual, Institute of Public Health and Department of Epidemiology & Public Health, London. *http://www.mrc-bsu.com.ac.uk/bugs
17. Stacy, E. W. & Mihram, G. A. (1965), `Parameter estimation for a generalized gamma distribution´,Technometrics(7), 349-358.
18. Weibull, W. (1951), `A statistical distribution function of wide applicability´, Journal of Applied Mechanics18(3), 292-297.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv34n1a06,AUTHOR = {Santos, Carlos Aparecido and Alberto Achcar, Jorge},
TITLE = {{A Bayesian Analysis in the Presence of Covariates for Multivariate Survival Data: An example of Application}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2011},
volume = {34},
number = {1},
pages = {111-131}
}
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2011 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).