Published
ESTIMACIÓN JERÁRQUICA BASADA EN EL DISEÑO MUESTRAL PARA ENCUESTAS ESTRATIFICADAS MULTI-PROPÓSITO
HIERARCHICAL DESIGN-BASED ESTIMATION IN STRATIFIED MULTIPURPOSE SURVEYS
Keywords:
inferencia basada en el diseño, población finita, población jerárquica, muestreo estratificado (es)Design based inference, Finite population, Hierarchical population, Stratified sampling (en)
Downloads
1Universidad Santo Tomás, Facultad de Estadística, Centro de Investigaciones y Estudios Estadísticos (CIEES), Bogotá, Colombia. Lecturer. Email: hugogutierrez@usantotomas.edu.co
2Universidad Santo Tomás, Facultad de Estadística, Centro de Investigaciones y Estudios Estadísticos (CIEES), Bogotá, Colombia. Lecturer. Email: hanwenzhang@usantotomas.edu.co
This paper considers the joint estimation of population totals for different variables of interest in multi-purpose surveys using stratified sampling designs. When the finite population has a hierarchical structure, different methods of unbiased estimation are proposed. Based on Monte Carlo simulations, it is concluded that the proposed approach is better, in terms of relative efficiency, than other suitable methods such as the generalized weight share method.
Key words: Design based inference, Finite population, Hierarchical population, Stratified sampling.
Este artículo considera la estimación conjunta de totales poblacionales para distintas variables de interés en encuestas multi-propósito que utilizan diseños de muestreo estratificados. En particular, se proponen distintos métodos de estimación insesgada cuando el contexto del problema induce una población con una estructura jerárquica. Con base en simulaciones de Monte Carlo, se concluye que los métodos de estimación propuestos son mejores, en términos de eficiencia relativa, que otros métodos de estimación indirecta como el recientemente publicado método de ponderación generalizada.
Palabras clave: inferencia basada en el diseño, población finita, población jerárquica, muestreo estratificado.
Texto completo disponible en PDF
References
1. Deville, J. C. & Lavallée, P. (2006), 'Indirect sampling: the foundation of the generalized weight shared method', Survey Methodology 32(2), 165-176.
2. Gelman, A. & Hill, J. (2006), Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press.
3. Goldstein, H. (1991), 'Multilevel modelling of survey data', Journal of the Royal Statistical Society: Series D (The Statistician) 40(2), 235-244.
4. Goldstein, H. (2002), Multilevel Statistical Models, Third edn, Wiley.
5. Gutiérrez, H. A. (2009), Estrategias de Muestreo. Diseño de Encuestas y Estimación de Parámetros, Universidad Santo Tomás.
6. Holmberg, A. (2002), 'A multiparameter perspective on the choice of sampling design in surveys', Statistics in Transition 5, 969-994.
7. Lavallée, P. (2007), Indirect Sampling., Springer.
8. Lehtonen, R. & Veijanen, A. (1999), Multilevel-model assisted generalized regression estimators for domain estimation, 'Proceedings of the 52nd ISI Session'.
9. R Development Core Team, (2009), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org
10. Rabe-Hesketh, S. & Skrondal, A. (2006), 'Multilevel modelling of complex survey data', Journal of the Royal Statistical Society: Series A (Statistics in Society) 169(4), 805-827.
11. Rao, P. S. R. S. (1988), Ratio and regression estimators, 'Handbook of Statistics', Vol. 6, North-Holland, p. 449-468.
12. Sárndal, (), .
13. Skinner, C. J., Holt, D. & Smith, T. M. F. (1989), Analysis of Complex Surveys, Chichester: Wiley.
14. Wu, C. (2003), 'Optimal calibration estimators in survey sampling', Biometrika 90(4), 937-951.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv34n3a01,
AUTHOR = {Gutiérrez, Hugo Andrés and Zhang, Hanwen},
TITLE = {{Hierarchical Design-Based Estimation in Stratified Multipurpose Surveys}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2011},
volume = {34},
number = {3},
pages = {403-420}
}
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2011 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).