Published
On the Performance Evaluation of Different Measures of Association
Evaluación de diferentes medidas de asociación
DOI:
https://doi.org/10.15446/rce.v37n1.44353Keywords:
Measures of association, Non-Normality, Non-Parametric methods, Normality, Parametric methods, Power. (en)medidas de asociación, no normalidad, métodos no paramétricos, métodos paramétricos, potencia (es)
Downloads
In this article our objective is to evaluate the performance of different measures of associations for hypothesis testing purposes. We have considered different measures of association (including some commonly used) in this study, one of which is parametric and others are non-parametric including three proposed modifications. Performance of these tests are compared under different symmetric, skewed and contaminated probability distributions that include Normal, Cauchy, Uniform, Laplace, Lognormal, Exponential, Weibull, Gamma, t, Chi-square, Half Normal, Mixed Weibull and Mixed Normal. Performances of these tests are measured in terms of power. We have suggested appropriate tests which may perform better under different situations based on their efficiency grading(s). It is expected that researchers will find these results useful in decision making.
En este articulo el objetivo es evaluar el desempeño de diferentes medidas de asociación para pruebas de hipótesis. Se consideran diferentes medidas, algunas paramétricas y otras no paramétricas, así como tres modificaciones propuestas por los autores. El desempeño de estas pruebas se evalúa considerando distribuciones simétricas, sesgadas y contaminadas incluyendo la distribución normal, Cauchy, uniforme, Laplace, lognormal, exponencial, Weibull, Gamma, t, Chi-cuadrado, medio normal, Weibull mezclada y normal mezclada. El desempeño se evalúa en términos de la potencia de los
tests. Se sugieren tests apropiados que tienen un mejor desempeño bajo diferentes niveles de eficiencia. Se espera que los investigadores encuentren
estos resultados útiles en la toma de decisiones.
https://doi.org/10.15446/rce.v37n1.44353
1King Fahad University of Petroleum and Minerals, Department of Mathematics and Statistics, Dhahran, Saudi Arabia. Professor. Email: riaz76qau@yahoo.com
2Quaid-i-Azam University, Department of Statistics, Islamabad, Pakistan. Professor. Email: farhan.saif@qau.edu.pk
3Quaid-i-Azam University, Department of Statistics, Islamabad, Pakistan. Professor. Email: g.zahid@gmail.com
In this article our objective is to evaluate the performance of different measures of associations for hypothesis testing purposes. We have considered different measures of association (including some commonly used) in this study, one of which is parametric and others are non-parametric including three proposed modifications. Performance of these tests are compared under different symmetric, skewed and contaminated probability distributions that include Normal, Cauchy, Uniform, Laplace, Lognormal, Exponential, Weibull, Gamma, t, Chi-square, Half Normal, Mixed Weibull and Mixed Normal. Performances of these tests are measured in terms of power. We have suggested appropriate tests which may perform better under different situations based on their efficiency grading(s). It is expected that researchers will find these results useful in decision making.
Key words: Measures of association, Non-Normality, Non-Parametric methods, Normality, Parametric methods, Power.
En este articulo el objetivo es evaluar el desempeño de diferentes medidas de asociación para pruebas de hipótesis. Se consideran diferentes medidas, algunas paramétricas y otras no paramétricas, así como tres modificaciones propuestas por los autores. El desempeño de estas pruebas se evalúa considerando distribuciones simétricas, sesgadas y contaminadas incluyendo la distribución normal, Cauchy, uniforme, Laplace, lognormal, exponencial, Weibull, Gamma, t, Chi-cuadrado, medio normal, Weibull mezclada y normal mezclada. El desempeño se evalúa en términos de la potencia de los tests. Se sugieren tests apropiados que tienen un mejor desempeño bajo diferentes niveles de eficiencia. Se espera que los investigadores encuentren estos resultados útiles en la toma de decisiones.
Palabras clave: medidas de asociación, no normalidad, métodos no paramétricos, métodos paramétricos, potencia.
Texto completo disponible en PDF
References
1. Daniel, W. W. (1990), Applied Nonparametric Statistics, Duxbury Classic Series, New York.
2. Gauthier, T. D. (2001), 'Detecting the trends using the Spearman's rank correlation coefficient', Environmental Forensics 2, 359-362.
3. Kendall, M. G. (1938), 'A new measure of rank correlation', Biometrika 5, 81-93.
4. Mahoney, M. & Magel, R. (1996), 'Estimation of the power of the Kruskal-Wallis test', Biometrical Journal 38, 613-630.
5. Maturi, T. A. & Elsayigh, A. (2010), 'A comparison of correlation coefficients via a three-step bootstrap approach', Journal of Mathematics Research 2, 3-10.
6. Mudelsee, M. (2003), 'Estimating Pearson's correlation coefficient with bootstrap confidence interval from serially dependent time series', Mathematical Geology 35, 651-665.
7. Munir, S., Asghar, Z. & Riaz, M. (2011), 'Performance evaluation of different tests for location parameters', Communications in Statistics-Simulation and Computation 40(6), 839-853.
8. Spearman, C. (1904), 'The proof and measurement of association between two things', American Journal of Psychology 15, 73-101.
9. Walker, D. A. (2003), 'JMASM9: converting Kendall's tau for correlational or meta-analytic analyses', Journal of Modern Applied Statistical Methods 2, 525-530.
10. Yitzhaki, S. (2003), 'Gini mean difference: a superior measure of variability for non normal distribution', Metron-International Journal of Statistics LXI, 285-316.
11. Zimmerman, D. W. (1994), 'A note on modified rank correlation', Journal of Educational and Behavioral Statistics 19, 357-362.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv37n1a01,
AUTHOR = {Riaz, Muhammad and Munir, Shahzad and Asghar, Zahid},
TITLE = {{On the Performance Evaluation of Different Measures of Association}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2014},
volume = {37},
number = {1},
pages = {1-24}
}
References
Daniel, W. W. (1990), Applied Nonparametric Statistics, Duxbury Classic Series, New York.
Gauthier, T. D. (2001), ‘Detecting the trends using the Spearman’s rank correlation coefficient’, Environmental Forensics 2, 359–362.
Kendall, M. G. (1938), ‘A new measure of rank correlation’, Biometrika 5, 81–93.
Mahoney, M. & Magel, R. (1996), ‘Estimation of the power of the Kruskal-Wallis test’, Biometrical Journal 38, 613–630.
Maturi, T. A. & Elsayigh, A. (2010), ‘A comparison of correlation coefficients via a three-step bootstrap approach’, Journal of Mathematics Research 2, 3–10.
Mudelsee, M. (2003), ‘Estimating Pearson’s correlation coefficient with bootstrap confidence interval from serially dependent time series’, Mathematical Geology 35, 651–665.
Munir, S., Asghar, Z. & Riaz, M. (2011), ‘Performance evaluation of different tests for location parameters’, Communications in Statistics-Simulation and Computation 40(6), 839–853.
Spearman, C. (1904), ‘The proof and measurement of association between two things’, American Journal of Psychology 15, 73–101.
Walker, D. A. (2003), ‘JMASM9: Converting Kendall’s tau for correlational or meta-analytic analyses’, Journal of Modern Applied Statistical Methods 2, 525–530.
Yitzhaki, S. (2003), ‘Gini mean difference: A superior measure of variability for non normal distribution’, Metron-International Journal of Statistics LXI, 285–316.
Zimmerman, D. W. (1994), ‘A note on modified rank correlation’, Journal of Educational and Behavioral Statistics 19, 357–362.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Rana A. Bakoban. (2017). Estimation for coefficient of variation of an extension of the exponential distribution under type-II censoring scheme. Open Physics, 15(1), p.566. https://doi.org/10.1515/phys-2017-0065.
2. Edoardo Saccenti. (2023). Metabolomics. , p.59. https://doi.org/10.1007/978-3-031-39094-4_3.
3. Liliana López-Kleine, Cristian González-Prieto. (2016). Challenges Analyzing RNA-Seq Gene Expression Data. Open Journal of Statistics, 06(04), p.628. https://doi.org/10.4236/ojs.2016.64053.
4. Muhammad Muzzamil Hussain Khattak, Muhammad Asif Khan, Sameer Ud Din, Muhammad Zaheer Khan, Muhammad Faisal Habib. (2023). Examining equity of walking accessibility to green spaces: A case study of Islamabad. Ain Shams Engineering Journal, 14(12), p.102556. https://doi.org/10.1016/j.asej.2023.102556.
5. René Lehmann, Bodo Vogt. (2024). Improving Likert scale big data analysis in psychometric health economics: reliability of the new compositional data approach. Brain Informatics, 11(1) https://doi.org/10.1186/s40708-024-00232-z.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2014 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).