Published
Algorithms to Calculate Exact Inclusion Probabilities for a Non-Rejective Approximate ps Sampling Design
Algoritmos para calcular probabilidades exactas de inclusión para un diseño de muestreo no rechazable pi*pt
DOI:
https://doi.org/10.15446/rce.v37n1.44362Keywords:
AP sampling design, Inclusion probabilities, Poisson sampling (en)AP diseño de muestra, probabilidades de inclusión, esquema de Poisson (es)
Downloads
AP-design, an efficient non-rejective implementation of the ps sampling design, was proposed in the literature as an alternative Poisson sampling scheme. In this paper, we have updated inclusion probabilities formulas in the AP sampling design. The formulas of these inclusion probabilities have been greatly simplified. The proposed results show that the AP design and the algorithms to calculate inclusion probabilities are simple and effective, and the design is possible to be used in practice. Three real examples have also been included to illustrate the performance of these designs.
Una implementación del diseño de muestreo pt, que no es de rechazo, ha sido recientemente propuesta como alternativa al esquema de Poisson. En este trabajo, hemos adaptado las formulas de probabilidades de inclusión en el diseño de muestreo Poisson alternativo (AP por sus siglas en inglés). Estas fórmulas han sido significativamente simplificadas. Los resultados propuestos muestran que el diseño AP y los algoritmos para calcular las probabilidades de inclusión son simples y efectivos, y que el diseño se puede usar en la práctica. Se incluyen tres ejemplos reales para ilustrar el desempeño de la propuesta.
https://doi.org/10.15446/rce.v37n1.44362
1Inner Mongolia University of Technology, Science College, Hohhot, P. R. China. Professor. Email: zz.yan@163.com
2Inner Mongolia University of Technology, Science College, Hohhot, P. R. China. Postgraduate student. Email: yuxiaxue_imut@163.com
AP-design, an efficient non-rejective implementation of the πps sampling design, was proposed in the literature as an alternative Poisson sampling scheme. In this paper, we have updated inclusion probabilities formulas in the AP sampling design. The formulas of these inclusion probabilities have been greatly simplified. The proposed results show that the AP design and the algorithms to calculate inclusion probabilities are simple and effective, and the design is possible to be used in practice. Three real examples have also been included to illustrate the performance of these designs.
Key words: AP sampling design, Inclusion probabilities, Poisson sampling.
Una implementación del diseño de muestreo πpt, que no es de rechazo, ha sido recientemente propuesta como alternativa al esquema de Poisson. En este trabajo, hemos adaptado las formulas de probabilidades de inclusión en el diseño de muestreo Poisson alternativo (AP por sus siglas en inglés). Estas fórmulas han sido significativamente simplificadas. Los resultados propuestos muestran que el diseño AP y los algoritmos para calcular las probabilidades de inclusión son simples y efectivos, y que el diseño se puede usar en la práctica. Se incluyen tres ejemplos reales para ilustrar el desempeño de la propuesta.
Palabras clave: AP diseño de muestra, probabilidades de inclusión, esquema de Poisson.
Texto completo disponible en PDF
References
1. A. Grafströ, (2009), 'Non-rejective implementations of the Sampford sampling design', Journal of Statistical Planning and Inference 139(6), 2111-2114.
2. A. R. Sen, (1953), 'On the estimate of variance in sampling with varying probabilities', Journal of the Indian Society of Agricultural Statistics 5, 119-127.
3. B. Rosén, (1997a), 'On sampling with probability proportional to size', Journal of Statistical Planning and Inference 62(2), 159-191.
4. B. Rosén, (1997b), 'Asymptotic theory for order sampling', Journal of Statistical Planning and Inference 62(2), 135-158.
5. C. Asok, & B. V. Sukhatme, (1976), 'On Sampford's procedure of unequal probability sampling without replacement', Journal of the American Statistical Association 71(365), 912-918.
6. Cem Kadilar, & Hulya Cingi, (2004), 'Ratio estimators in simple random sampling', Applied Mathematics and Computation 151(3), 893-902.
7. J. Durbin, (1967), 'Design of multi-stage surveys for the estimation of sampling errors', Journal of the Royal Statistical Society. Series C: Applied Statistics 16(2), 152-164.
8. J. Hájek, (1964), 'Asymptotic theory of rejective sampling with varying probabilities from a finite population', Annals of Mathematical Statistics 35(4), 1491-1523.
9. J. Hájek, (1981), Sampling from a Finite Population, Marcel Dekker, New York.
10. J. Olofsson, (2011), 'Algorithms to find exact inclusion probabilities for 2P\pips sampling designs', Lithuanian Mathematical Journal 51(3), 425-439.
11. K. R. W. Brewer, (1963), 'A model of systematic sampling with unequal probability', Australian and New Zealand Journal of Statistics 5(1), 5-13.
12. L. Bondesson, & A. Grafström, (2011), 'An extension of Sampford's method for unequal probability sampling', Scandinavian Journal of Statistics 38(2), 377-392.
13. L. Bondesson,, I. Traat, & A. Lundqvist, (2006), 'Pareto sampling versus conditional Poisson and Sampford sampling', Scandinavian Journal of Statistics 33(4), 699-720.
14. L. Bondesson, & L. D. Thorburn, (2008), 'A list sequential sampling method suitable for real-time sampling', Scandinavian Journal of Statistics 35(3), 466-483.
15. M. P. Singh, (1967), 'Multivariate product method of estimation for finite populations', Journal of the Indian Society of Agricultural Statistics 31, 375-378.
16. M. R. Sampford, (1967), 'On sampling without replacement with unequal probabilities of selection', Biometrika 54(3-4), 499-513.
17. N. Aires, (1999), 'Algorithms to find exact inclusion probabilities for conditional Poisson sampling and Pareto \pips', Methodology and Computing in Applied Probability Sampling Designs 1(4), 457-469.
18. T. Laitila, & J. Olofsson, (2011), 'A two-phase sampling scheme and \pips designs', Journal of Statistical Planning and Inference 141(5), 1646-1654.
19. Y Tillé, (2006), Sampling Algorithms, Springer, New York.
20. Y. Zaizai,, L. Miaomiao, & Y. Yalu, (2013), 'An efficient non-rejective implementation of the \pips sampling designs', Journal of Applied Statistics 40(4), 870-886.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv37n1a09,
AUTHOR = {Yan, Zaizai and Xue, Yuxia},
TITLE = {{Algorithms to Calculate Exact Inclusion Probabilities for a Non-Rejective Approximate πpsSampling Design}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2014},
volume = {37},
number = {1},
pages = {127-140}
}
References
Aires, N. (1999), ‘Algorithms to find exact inclusion probabilities for conditional Poisson sampling and Pareto pi-ps’, Methodology and Computing in Applied Probability Sampling Designs 1(4), 457–469.
Asok, C. & Sukhatme, B. V. (1976), ‘On sampford’s procedure of unequal probability sampling without replacement’, Journal of the American Statistical Association 71(365), 912–918.
Bondesson, L. & Grafström, A. (2011), ‘An extension of Sampford’s method for unequal probability sampling’, Scandinavian Journal of Statistics 38(2), 377– 392.
Bondesson, L. & Thorburn, L. D. (2008), ‘A list sequential sampling method suitable for real-time sampling’, Scandinavian Journal of Statistics 35(3), 466–483.
Bondesson, L., Traat, I. & Lundqvist, A. (2006), ‘Pareto sampling versus conditional Poisson and Sampford sampling’, Scandinavian Journal of Statistics 33(4), 699–720.
Brewer, K. R. W. (1963), ‘A model of systematic sampling with unequal probability’, Australian and New Zealand Journal of Statistics 5(1), 5–13.
Durbin, J. (1967), ‘Design of multi-stage surveys for the estimation of sampling errors’, Journal of the Royal Statistical Society. Series C: Applied Statistics 16(2), 152–164.
Grafströ, A. (2009), ‘Non-rejective implementations of the Sampford sampling design’, Journal of Statistical Planning and Inference 139(6), 2111–2114.
Hájek, J. (1964), ‘Asymptotic theory of rejective sampling with varying probabilities from a finite population’, Annals of Mathematical Statistics 35(4), 1491–1523.
Hájek, J. (1981), Sampling from a Finite Population, Marcel Dekker, New York.
Kadilar, C. & Cingi, H. (2004), ‘Ratio estimators in simple random sampling’, Applied Mathematics and Computation 151(3), 893–902.
Laitila, T. & Olofsson, J. (2011), ‘A two-phase sampling scheme and ps designs’, Journal of Statistical Planning and Inference 141(5), 1646–1654.
Olofsson, J. (2011), ‘Algorithms to find exact inclusion probabilities for 2p pi ps sampling designs’, Lithuanian Mathematical Journal 51(3), 425–439.
Rosén, B. (1997a), ‘Asymptotic theory for order sampling’, Journal of Statistical Planning and Inference 62(2), 135–158.
Rosén, B. (1997b), ‘On sampling with probability proportional to size’, Journal of Statistical Planning and Inference 62(2), 159–191.
Sampford, M. R. (1967), ‘On sampling without replacement with unequal probabilities of selection’, Biometrika 54(3-4), 499–513.
Sen, A. R. (1953), ‘On the estimate of variance in sampling with varying probabilities’, Journal of the Indian Society of Agricultural Statistics 5, 119–127.
Singh, M. P. (1967), ‘Multivariate product method of estimation for finite populations’, Journal of the Indian Society of Agricultural Statistics 31, 375–378.
Tillé, Y. (2006), Sampling Algorithms, Springer, New York.
Zaizai, Y., Miaomiao, L. & Yalu, Y. (2013), ‘An efficient non-rejective implementation of the ps sampling designs’, Journal of Applied Statistics 40(4), 870–886.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Sarah Gustia Redjeki, Alfa Fildzah Hulwana, Rizqa Nurul Aulia, Ira Maya, Anis Yohana Chaerunisaa, Sriwidodo Sriwidodo. (2025). Sacha Inchi (Plukenetia volubilis): Potential Bioactivity, Extraction Methods, and Microencapsulation Techniques. Molecules, 30(1), p.160. https://doi.org/10.3390/molecules30010160.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2014 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






