Published
Slashed Rayleigh Distribution
Distribución Slashed Rayleigh
DOI:
https://doi.org/10.15446/rce.v38n1.48800Keywords:
Kurtosis, Rayleigh Distribution, Slashed-elliptical Distributions, Slashed-Rayleigh Distribution, Slashed-Weibull Distribution, Weibull Distribution (en)Curtosis, Distribución Rayleigh, Distribuciones Slashed-elípticas, Distribución Slashed-Rayleigh, Distribución Slashed-Weibull, DistribuciónWeibull. (es)
In this article we study a subfamily of the slashed-Weibull family. This subfamily can be seen as an extension of the Rayleigh distribution with more flexibility in terms of the kurtosis of distribution. This special feature makes the extension suitable for fitting atypical observations. It arises as the ratio of two independent random variables, the one in the numerator being a Rayleigh distribution and a power of the uniform distribution in the denominator. We study some probability properties, discuss maximum likelihood estimation and present real data applications indicating that the slashed-Rayleigh distribution can improve the ordinary Rayleigh distribution in fitting real data.
En este artículo estudiamos una subfamilia de la familia slashed-Weibull. Esta subfamilia puede ser vista como una extensión de la distribución Rayleigh con más flexibilidad en cuanto a la kurtosis de la distribución. Esta particularidad hace que la extensión sea adecuada para ajustar observaciones atípicas. Esto surge como la razón de dos variables aleatorias independientes, una en el numerador siendo una distribución Rayleigh y una potencia de la distribución uniforme en el denominador. Estudiamos algunas propiedades de probabilidad, discutimos la estimación de máxima verosimilitud y presentamos aplicaciones a datos reales indicando que la distribución slashed-Rayleigh presenta mejor ajuste para datos reales que la distribución Rayleigh.
https://doi.org/10.15446/rce.v38n1.48800
1Universidad de Atacama, Instituto Tecnológico, Copiapó, Chile. Lecturer. Email: yuri.iriarte@uda.cl
2Universidad de Antofagasta, Facultad de Ciencias Básicas, Departamento de Matemáticas, Antofagasta, Chile. Professor. Email: hector.gomez@uantof.cl
3Universidad de Antofagasta, Facultad de Ciencias Básicas, Departamento de Matemáticas, Antofagasta, Chile. Professor. Email: hector.varela@uantof.cl
4Universidad de Sao Paulo, Instituto de Matemática y Estatística, Departamento de Estatística, Sao Paulo, Brasil. Professor. Email: hbolfar@ime.usp.br
In this article we study a subfamily of the slashed-Weibull family. This subfamily can be seen as an extension of the Rayleigh distribution with more flexibility in terms of the kurtosis of distribution. This special feature makes the extension suitable for fitting atypical observations. It arises as the ratio of two independent random variables, the one in the numerator being a Rayleigh distribution and a power of the uniform distribution in the denominator. We study some probability properties, discuss maximum likelihood estimation and present real data applications indicating that the slashed-Rayleigh distribution can improve the ordinary Rayleigh distribution in fitting real data.
Key words: Kurtosis, RayleighDistribution, Slashed-elliptical Distributions, Slashed-Rayleigh Distribution, Slashed-Weibull Distribution, Weibull Distribution.
En este artículo estudiamos una subfamilia de la familia slashed-Weibull. Esta subfamilia puede ser vista como una extensión de la distribución Rayleigh con más flexibilidad en cuanto a la kurtosis de la distribución. Esta particularidad hace que la extensión sea adecuada para ajustar observaciones atípicas. Esto surge como la razón de dos variables aleatorias independientes, una en el numerador siendo una distribución Rayleigh y una potencia de la distribución uniforme en el denominador. Estudiamos algunas propiedades de probabilidad, discutimos la estimación de máxima verosimilitud y presentamos aplicaciones a datos reales indicando que la distribución slashed-Rayleigh presenta mejor ajuste para datos reales que la distribución Rayleigh.
Palabras clave: curtosis, distribución Rayleigh, distribuciones Slashed-elípticas, distribución Slashed-Rayleigh, distribución Slashed-Weibull, distribución Weibull.
Texto completo disponible en PDF
References
1. Arslan, O. (2008), 'An alternative multivariate skew-slash distribution', Statistics and Probability Letters 78(16), 2756-2761.
2. Aubin, S. L. (1990), 'The lognormal distribution for modeling quality data when the mean is near zero', Journal of Quality Technology 22, 105-110.
3. Balakrishnan, N. & Kocherlakota, S. (1985), 'On the double Weibull distribution: order statistics and estimation', Sankhy\overline{a} 47, 161-178.
4. Cordeiro, G. M., Cristino, C. T., Hashimoto, E. M. & Ortega, E. M. (2013), 'The Beta generalized Rayleigh distribution with applications to lifetime data', Statistical Papers 54(1), 133-161.
5. Devore, J. (2005), Probabilidad y Estadística para Ingeniería y Ciencias, 6 edn, Editorial Thomson.
6. Fang, K. T., Kotz, S. & Ng, K. W. (1990), Symmetric Multivariate and Related Distributions, Chapman and Hall, New York.
7. Gómez, H. W., Olivares-Pacheco, J. F. & Bolfarine, H. (2009), 'An extension of the generalized Birnbaum-Saunders distribution', Statistics Probability Letters 79(3), 331-338.
8. Gómez, H. W., Quintana, F. A. & Torres, F. J. (2007), 'A new family of slash-distributions with elliptical contours', Statistics and Probability Letters 77(7), 717-725.
9. Gómez, H. W. & Venegas, O. (2008), 'Erratum to: a new family of slash-distributions with elliptical contours [statist. probab. lett. 77 (2007) 717-725]', Statistics Probability Letters 78(14), 2273-2274.
10. Gómez, Y. M., Bolfarine, H. & Gómez, H. W. (2014), 'A new extension of the exponential distribution', Revista Colombiana de Estadística 37, 25-34.
11. Johnson, N. L., Kotz, S. & Balakrishnan, N. (1994), Continuous Univariate Distributions, Vol. 1, 2 edn, Wiley, New York.
12. Kundu, D. & Raqab, M. Z. (2005), 'Generalized Rayleigh distribution: Different methods of estimation', Computational Statistics and Data Analysis 49, 187-200.
13. Manesh, S. F. & Khaledi, B. E. (2008), 'On the likelihood ratio order for convolutions of independent generalized Rayleigh random variables', Statistics and Probability Letters 78, 3139-3144.
14. Olivares-Pacheco, J. F., Cornide-Reyes, H. C. & Monasterio, M. (2010), 'An extension of the two-parameter Weibull distribution', Revista Colombiana de Estadística 33(2), 219-231.
15. Olmos, N. M., Varela, H., Gómez, H. W. & Bolfarine, H. (2012), 'An extension of the half-normal distribution', Statistical Papers 53, 875-886.
16. Surles, J. G. & Padgett, W. J. (2001), 'Inference for reliability and stress-strength for a scaled Burr type X distribution', Lifetime Data Analysis 7, 187-200.
17. Vod\checka, V. G. (1976), 'Inferential procedures on a generalized Rayleigh variate I', Applied Mathematics 21, 395-412.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv38n1a02,
AUTHOR = {Iriarte, Yuri A. and Gómez, Héctor W. and Varela, Héctor and Bolfarine, Heleno},
TITLE = {{Slashed Rayleigh Distribution}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2015},
volume = {38},
number = {1},
pages = {31-44}
}
References
Arslan, O. (2008), ‘An alternative multivariate skew-slash distribution’, Statistics and Probability Letters 78(16), 2756–2761.
Aubin, S. L. (1990), ‘The lognormal distribution for modeling quality data when the mean is near zero’, Journal of Quality Technology 22, 105–110.
Balakrishnan, N. & Kocherlakota, S. (1985), ‘On the double Weibull distribution: order statistics and estimation’, Sankhya 47, 161–178.
Cordeiro, G. M., Cristino, C. T., Hashimoto, E. M. & Ortega, E. M. (2013), ‘The Beta generalized Rayleigh distribution with applications to lifetime data’, Statistical Papers 54(1), 133–161.
Devore, J. (2005), Probabilidad y Estadística para Ingeniería y Ciencias, 6 edn, Editorial Thomson.
Fang, K. T., Kotz, S. & Ng, K. W. (1990), Symmetric Multivariate and Related Distributions, Chapman and Hall, New York.
Gómez, H. W., Olivares-Pacheco, J. F. & Bolfarine, H. (2009), ‘An extension of the generalized Birnbaum-Saunders distribution’, Statistics Probability Letters 79(3), 331–338.
Gómez, H. W., Quintana, F. A. & Torres, F. J. (2007), ‘A new family of slash-distributions with elliptical contours’, Statistics and Probability Letters 77(7), 717–725.
Gómez, H. W. & Venegas, O. (2008), ‘Erratum to: A new family of slashdistributions with elliptical contours [statist. probab. lett. 77 (2007) 717-725]’, Statistics Probability Letters 78(14), 2273–2274.
Gómez, Y. M., Bolfarine, H. & Gómez, H. W. (2014), ‘A new extension of the exponential distribution’, Revista Colombiana de Estadística 37, 25–34.
Johnson, N. L., Kotz, S. & Balakrishnan, N. (1994), Continuous Univariate Distributions, Vol. 1, 2 edn, Wiley, New York.
Kundu, D. & Raqab, M. Z. (2005), ‘Generalized Rayleigh distribution: Different methods of estimation’, Computational Statistics and Data Analysis 49, 187– 200.
Manesh, S. F. & Khaledi, B. E. (2008), ‘On the likelihood ratio order for convolutions of independent generalized Rayleigh random variables’, Statistics and Probability Letters 78, 3139–3144.
Olivares-Pacheco, J. F., Cornide-Reyes, H. C. & Monasterio, M. (2010), ‘An extensión of the two-parameter Weibull distribution’, Revista Colombiana de Estadística 33(2), 219–231.
Olmos, N. M., Varela, H., Gómez, H. W. & Bolfarine, H. (2012), ‘An extension of the half-normal distribution’, Statistical Papers 53, 875–886.
Surles, J. G. & Padgett, W. J. (2001), ‘Inference for reliability and stress-strength for a scaled Burr type x distribution’, Lifetime Data Analysis 7, 187–200.
Voda, V. G. (1976), ‘Inferential procedures on a generalized Rayleigh variate I’, Applied Mathematics 21, 395–412.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Héctor J. Gómez, Diego I. Gallardo, Karol I. Santoro. (2021). Slash Truncation Positive Normal Distribution and Its Estimation Based on the EM Algorithm. Symmetry, 13(11), p.2164. https://doi.org/10.3390/sym13112164.
2. Hugo S. Salinas, Yuri A. Iriarte, Heleno Bolfarine. (2015). Slashed Exponentiated Rayleigh Distribution. Revista Colombiana de Estadística, 38(2), p.453. https://doi.org/10.15446/rce.v38n2.51673.
3. Mutua Kilai, Gichuhi A. Waititu, Wanjoya A. Kibira, M.M. Abd El-Raouf, Tahani A. Abushal. (2022). A new versatile modification of the Rayleigh distribution for modeling COVID-19 mortality rates. Results in Physics, 35, p.105260. https://doi.org/10.1016/j.rinp.2022.105260.
4. Sanku Dey, Enayetur Raheem, Saikat Mukherjee. (2017). Statistical properties and different methods of estimation of transmuted Rayleigh distribution. Revista Colombiana de Estadística, 40(1), p.165. https://doi.org/10.15446/rce.v40n1.56153.
5. Mario A. Rojas, Yuri A. Iriarte. (2022). A Lindley-Type Distribution for Modeling High-Kurtosis Data. Mathematics, 10(13), p.2240. https://doi.org/10.3390/math10132240.
6. Mehmet Niyazi Çankaya, Yakup Murat Bulut, Fatma Zehra Dogru, Olcay Arslan. (2015). A Bimodal Extension of the Generalized Gamma Distribution. Revista Colombiana de Estadística, 38(2), p.353. https://doi.org/10.15446/rce.v38n2.51666.
7. E. Gómez-Déniz, L. Gómez, H. W. Gómez, Giovanni Falsone. (2019). The Slashed‐Rayleigh Fading Channel Distribution. Mathematical Problems in Engineering, 2019(1) https://doi.org/10.1155/2019/2719849.
8. Abdulrhaman A. J. Ahmed, Feras Sh. M. Batah. (2023). Estimation of reliability series stress – Strength model based on power Rayleigh distribution. 2ND INTERNATIONAL CONFERENCE OF MATHEMATICS, APPLIED SCIENCES, INFORMATION AND COMMUNICATION TECHNOLOGY. 2ND INTERNATIONAL CONFERENCE OF MATHEMATICS, APPLIED SCIENCES, INFORMATION AND COMMUNICATION TECHNOLOGY. 2834, p.080044. https://doi.org/10.1063/5.0170971.
9. Neveka M. Olmos, Osvaldo Venegas, Yolanda M. Gómez, Yuri A. Iriarte. (2020). Confluent hypergeometric slashed-Rayleigh distribution: Properties, estimation and applications. Journal of Computational and Applied Mathematics, 368, p.112548. https://doi.org/10.1016/j.cam.2019.112548.
10. Jimmy Reyes, Mario A. Rojas, Osvaldo Venegas, Héctor W. Gómez. (2020). Nakagami Distribution with Heavy Tails and Applications to Mining Engineering Data. Journal of Statistical Theory and Practice, 14(4) https://doi.org/10.1007/s42519-020-00122-7.
11. Peter Zörnig. (2019). On Generalized Slash Distributions: Representation by Hypergeometric Functions. Stats, 2(3), p.371. https://doi.org/10.3390/stats2030026.
12. Jaine de Moura Carvalho, Frank Gomes-Silva, Josimar M. Vasconcelos, Gauss M. Cordeiro. (2025). The slashed Lomax distribution: new properties and Mellin-type statistical measures for inference. Journal of Applied Statistics, , p.1. https://doi.org/10.1080/02664763.2025.2451977.
13. Leonardo Barrios, Yolanda M. Gómez, Osvaldo Venegas, Inmaculada Barranco-Chamorro, Héctor W. Gómez. (2022). The Slashed Power Half-Normal Distribution with Applications. Mathematics, 10(9), p.1528. https://doi.org/10.3390/math10091528.
14. Huihui Li, Weizhong Tian. (2020). Slashed Lomax Distribution and Regression Model. Symmetry, 12(11), p.1877. https://doi.org/10.3390/sym12111877.
15. Yuri A. Iriarte, Nabor O. Castillo, Heleno Bolfarine, Héctor W. Gómez. (2018). Modified slashed-Rayleigh distribution. Communications in Statistics - Theory and Methods, 47(13), p.3220. https://doi.org/10.1080/03610926.2017.1353621.
16. Jimmy Reyes, Yuri A. Iriarte, Pedro Jodrá, Héctor W. Gómez. (2019). The Slash Lindley-Weibull Distribution. Methodology and Computing in Applied Probability, 21(1), p.235. https://doi.org/10.1007/s11009-018-9651-2.
17. Mustafa Ç. Korkmaz. (2020). A new heavy-tailed distribution defined on the bounded interval: the logit slash distribution and its application. Journal of Applied Statistics, 47(12), p.2097. https://doi.org/10.1080/02664763.2019.1704701.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2015 Revista Colombiana de Estadística
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).