Published
A comparative study of the Gini coefficient estimators based on the linearization and U-statistics Methods
Estudio comparativo de coeficientes de estimación Gini basados en la linealización y métodos de U-statsitics
DOI:
https://doi.org/10.15446/rce.v40n2.53399Keywords:
Gini coefficient, Inequality index, U-statistics, Linearization method, Resampling techniques. (en)Índice Gini, Distribuciones de la renta, Método de linealización, Técnicas de remuestreo, U-statistics (es)
Downloads
In this paper, we consider two well-known methods for analysis of the Gini index, which are U-statistics and linearization for some income
distributions. In addition, we evaluate two different methods for some properties of their proposed estimators. Also, we compare two methods with resampling techniques in approximating some properties of the Gini index. A simulation study shows that the linearization method performs 'well' compared to the Gini estimator based on U-statistics. A brief study on real data supports our findings.
References
Arcagni, A. & Porro, F. (2014), 'The graphical reprensentation of inequality', Revista Colombiana de Estadística 37, 419_436.
Barrett, G. F. & Donald, S. G. (2009), 'Statistical inference with generalized Gini indices of inequality, poverty, and welfare', Journal of Business & Economic Statistics 27, 1_17.
Berger, Y. G. (2008), 'A note on the asymptotic equivalence of jackknife and linearization variance estimation for the Gini coe_cient', Journal of Statist 24(1), 541_555.
Bishop, J. A., Formby, J. P. & Zheng, B. (1997), 'Statistical inference and the Sen index of poverty', International Economic Review 150, 381_387.
Davidson, R. (2009), 'Reliable inference for the Gini index', Journal of economet-rics 150(1), 30_40.
Gastwirth, J. L. (1971), 'A general de_nition of the Lorenz curve', Econometrica 39, 1037_1039.
Giles, D. E. (2004), 'Calculating a standard error for the Gini coe_cient: some further results', Oxford Bulletin of Economics and Statistics 66(1), 425_433.
Giles, D. E. (2006), 'A cautionary note on estimating the standard error of the Gini index of inequality: comment', Oxford Bulletin of Economics and Statistics 68(1), 395_396.
Hoe_ding, W. (1948), 'A class of statistics with asymptotically normal distribution', The Annals of Mathematical Statistics 19(1), 293_325.
Knight, K. (1999), Mathematical Statistics, John Wiley & Sons, New York.
Langel, M. & Tillé, Y. (2013), 'Variance estimation of the Gini index: revisiting a result several times published', Journal of the Royal Statistical Society-Series A 176, 521_540.
Lerman, R. I. & Yitzhaki, S. (1984), 'A note on the calculation and interpretation of the Gini index', Economics Letters de Estadistica 15, 363_368.
Mills, J. A. & Zandvakili, S. (1997), 'Statistical inference via bootstrapping for measures of inequality', Journal of Applied econometrics 12, 133_150.
Modarres, R. & Gastwirth, J. L. (2006), 'A cautionary note on estimating the standard error of the Gini index of inequality', Oxford Bulletin of Economics and Statistics 68(1), 391_393.
Ogwang, T. (2000), 'A convenient method of computing the Gini index and its standard error', Oxford Bulletin of Economics and Statistics 47, 123_129.
Ser_ing, R. J. (2009), Approximation theorems of mathematical statistics, John Wiley & Sons, New York.
Shalit, H. (1985), 'Calculating the Gini index of inequality for individual data', Oxford Bulletin of Economics and Statistics 47, 185_189.
Wolfe, D. & Randles, R. (1973), Introduction to the Theory of Nonparametric Statistics, Wiley, New York.
Xu, K. (2003), 'How has the literature on Gini's index evolved in the past 80 years?', Dalhousie University, Economics Working Paper.
Xu, K. (2007), 'U-statistics and their asymptotic results for some inequality and poverty measures', Econometric Reviews 26, 567_577.
Yitzhaki, S. (1991), 'Calculating jackknife variance estimators for parameters of the Gini method', Journal of Business & Economic Statistics 9, 235_239.
Yitzhaki, S. (1998), 'More than a dozen alternative ways of spelling Gini', Research on economic inequality 8, 13_30.
Yitzhaki, S. & Schechtman, E. (2013), The Gini Methodology: A primer on a Statistical Methodology, Springer, New York.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Alicja Jokiel-Rokita, Sylwester Pia̧tek. (2024). Estimation of parameters and quantiles of the Weibull distribution. Statistical Papers, 65(1), p.1. https://doi.org/10.1007/s00362-022-01379-9.
2. Sayan Putatunda, Kiran Rama. (2019). A Modified Bayesian Optimization based Hyper-Parameter Tuning Approach for Extreme Gradient Boosting. 2019 Fifteenth International Conference on Information Processing (ICINPRO). , p.1. https://doi.org/10.1109/ICInPro47689.2019.9092025.
3. Sayan Putatunda, Kiran Rama. (2018). A Comparative Analysis of Hyperopt as Against Other Approaches for Hyper-Parameter Optimization of XGBoost. Proceedings of the 2018 International Conference on Signal Processing and Machine Learning. , p.6. https://doi.org/10.1145/3297067.3297080.
4. Komi Agbokou, Yaogan Mensah. (2023). Varying bandwidth parameter method on Kernel Gini index estimation. Annals of the University of Craiova Mathematics and Computer Science Series, 50(1), p.29. https://doi.org/10.52846/ami.v50i1.1602.
5. Marta Malecka. (2022). Asymptotic properties of duration-based VaR backtests. Statistics & Risk Modeling, 39(3-4), p.49. https://doi.org/10.1515/strm-2021-0019.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2017 Revista Colombiana de Estadística
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).