Published

2018-01-01

Finite mixture of compositional regression with gaussian errors

Mixtura finita de una regresión composicional con errores gaussianos

DOI:

https://doi.org/10.15446/rce.v41n1.63152

Keywords:

Compositional Data, Finite Mixture Regression, EM Algorithm (en)
algoritmo EM, Datos Composicionales, mixtura finita (es)

Downloads

Authors

  • Taciana Shimizu University of Sao Paulo
  • Francisco Louzada University of Sao Paulo
  • Adriano Suzuki University of Sao Paulo

In this paper, we consider to evaluate the efficiency of volleyball players according to the performance of attack, block and serve, but considering the compositional structure of the data related to the fundaments. The finite mixture of regression models better fitted the data in comparison with the usual regression model. The maximum likelihood estimates are obtained via an EM algorithm. A simulation study revels that the estimates are closer to the real values, the estimators are asymptotically unbiased for the parameters.
A real Brazilian volleyball dataset related to the efficiency of the players is considered for the analysis.

En este estudio evaluamos la eficiencia de los jugadores de voleibol de acuerdo con su desempeño de ataque, bloqueo y servicio, teniendo en cuenta la estructura composicional de los datos relacionados con los fundamentos de este deporte. Así, consideramos un modelo de regresión de mixtura finita para datos composicionales. La estimación de máxima verosimilitud fue obtenida via un Algoritmo EM. Un estudio de simulación revela que los parámetros son correctamente recuperados. Adicionalmente, los estimadores son asintóticamente insesgados. Considerando dados reales del campeonato de voleyball brasileño nosotros mostramos que el modelo propuesto presenta mejor ajuste que el modelo de regresión usual.

References

Aitchison, J. (1986). The statistical analysis of compositional data, Chapman & Hall.

Aitchison, J. & Shen, S. M. (1980). Logistic-normal distributions: Some properties and uses, Biometrika 67(2), 261–272.

Bozhkova, A. (2013). Playing efficiency of the best volleyball players in the world, Research in Kinesiology 41(1), 92–95.

Brazilian Volleyball Confederation (CBV) (2016), http://www.cbv.com.br/v1/superliga1415/estatisticas-novo.asp?gen=m. Accessed: 2016-01-20.

Dempster, A., Laird, N. & Rubin, D. (1977), Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal Statistical Society. Series B (Methodological) 39(1), 1–38.

Egozcue, J. J., Daunis-I-Estadella, J., Pawlowsky-Glahn, V., Hron, K. & Filzmoser, P. (2011). Simplicial regression. the normal model, Journal of Applied Probability and Statistics 6(1), 87–108.

Faria, S. & Soromenho, G. (2010). Fitting mixtures of linear regressions, Journal of Statistical Computation and Simulation 80(2), 201–225.

Hron, K., Filzmoser, P. & Thompson, K. (2012). Linear regression with compositional explanatory variables, Journal of Applied Statistics 39(5), 1115–1128.

McLachlan, G. J. & Peel, D. (2000). Finite Mixture Models, Wiley series in probability and statistics, Wiley & Sons, New York.

Migon, H. S., Gamerman, D. & Louzada, F. (2014). Statistical Inference: An Integrated Approach, Chapman & Hall/CRC, London.

Miljkovic, T., Shaik, S. & Miljkovic, D. (2016). Redefining standards for body mass index of the us population based on brfss data using mixtures, Journal of Applied Statistics pp. 1–15.

*http://dx.doi.org/10.1080/02664763.2016.11683661

Pena, J., Guerra, J. R., Busca, B. & Serra, N. (2013). Which skills and factors better predict winning and losing in high-level men's volleyball?, Journal of Strength and Conditioning Research 27(9), 2487–2493.

Quandt, R. & Ramsey, J. (1978). Estimating mixtures of normal distributions and switching regression, Journal of American Statistical Association 73, 730–738.

R Development Core Team (2013). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. *http://www.R-project.org

Van Den Boogaart, K. G. & Tolosana-Delgado, R. (2013). Analyzing compositional data with R, Springer.

How to Cite

APA

Shimizu, T., Louzada, F. & Suzuki, A. (2018). Finite mixture of compositional regression with gaussian errors. Revista Colombiana de Estadística, 41(1), 75–86. https://doi.org/10.15446/rce.v41n1.63152

ACM

[1]
Shimizu, T., Louzada, F. and Suzuki, A. 2018. Finite mixture of compositional regression with gaussian errors. Revista Colombiana de Estadística. 41, 1 (Jan. 2018), 75–86. DOI:https://doi.org/10.15446/rce.v41n1.63152.

ACS

(1)
Shimizu, T.; Louzada, F.; Suzuki, A. Finite mixture of compositional regression with gaussian errors. Rev. colomb. estad. 2018, 41, 75-86.

ABNT

SHIMIZU, T.; LOUZADA, F.; SUZUKI, A. Finite mixture of compositional regression with gaussian errors. Revista Colombiana de Estadística, [S. l.], v. 41, n. 1, p. 75–86, 2018. DOI: 10.15446/rce.v41n1.63152. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/63152. Acesso em: 17 nov. 2025.

Chicago

Shimizu, Taciana, Francisco Louzada, and Adriano Suzuki. 2018. “Finite mixture of compositional regression with gaussian errors”. Revista Colombiana De Estadística 41 (1):75-86. https://doi.org/10.15446/rce.v41n1.63152.

Harvard

Shimizu, T., Louzada, F. and Suzuki, A. (2018) “Finite mixture of compositional regression with gaussian errors”, Revista Colombiana de Estadística, 41(1), pp. 75–86. doi: 10.15446/rce.v41n1.63152.

IEEE

[1]
T. Shimizu, F. Louzada, and A. Suzuki, “Finite mixture of compositional regression with gaussian errors”, Rev. colomb. estad., vol. 41, no. 1, pp. 75–86, Jan. 2018.

MLA

Shimizu, T., F. Louzada, and A. Suzuki. “Finite mixture of compositional regression with gaussian errors”. Revista Colombiana de Estadística, vol. 41, no. 1, Jan. 2018, pp. 75-86, doi:10.15446/rce.v41n1.63152.

Turabian

Shimizu, Taciana, Francisco Louzada, and Adriano Suzuki. “Finite mixture of compositional regression with gaussian errors”. Revista Colombiana de Estadística 41, no. 1 (January 1, 2018): 75–86. Accessed November 17, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/63152.

Vancouver

1.
Shimizu T, Louzada F, Suzuki A. Finite mixture of compositional regression with gaussian errors. Rev. colomb. estad. [Internet]. 2018 Jan. 1 [cited 2025 Nov. 17];41(1):75-86. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/63152

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

495

Downloads

Download data is not yet available.