Estimating the Gumbel-Barnett copula parameter of dependence
Estimación del parámetro de dependencia de la copula Gumbel-Barnett
DOI:
https://doi.org/10.15446/rce.v41n1.64900Keywords:
Copula, Dependence, Correlation, Estimation, Bayesian, Simulation (en)bayesiana, copula Gumbel Barnett, correlación, dependencia copula, estimación, simulación (es)
Downloads
References
Balakrishnan, N. & Lai, C.-D. (2009), Continuous bivariate distributions, Springer Science & Business Media.
Barnett, V. (1980), `Some bivariate uniform distributions', Communi
ations in statistics-theory and methods 9(4), 453-461.
Barnett, V. (1983), `Redued distance measures and transformations in processing multivariate outliers', Australian & New Zealand Journal of Statistics 25(1), 64-75.
Efron, B. (1992), Bootstrap methods: another look at the ja
kknife, in `Breakthroughs in Statistics', Springer, pp. 569-593.
Genest, C., Ghoudi, K. & Rivest, L.-P. (1995), `A semiparametri
estimation procedure of dependence parameters in multivariate families of distributions', Biometrika pp. 543-552.
Genest, C. & Mackay, R. J. (1986), `Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données', Canadian Journal of Statistics 14(2), 145-159.
Gumbel, E. J. (1960), `Bivariate exponential distributions', Journal of the American Statistical Association 55(292), 698-707.
Hoff, P. D. (2007), `Extending the rank likelihood for semiparametrica copula estimation', The Annals of Applied Statistics pp. 265-283.
Klein, I. & Christa, F. (2011), Families of copulas closed under the
construction of generalized linear means, Technical report, IWQW discussion paper series.
Louie, H. (2014), `Evaluation of bivariate archimedean and elliptical
copulas to model wind power dependence y structures', Wind Energy 17(2), 225-240.
Martinez, E. Z. & Achcar J. (2014), `Bayesian bivariate generalized lindley model for survival data with a cure fraction', Computer methods and programs in biomedicine 117(2), 145-157.
Mengersen, K. L., Pudlo, P. & Robert, C. P. (2013), `Bayesian computation via empirical likelihood', Proceedings of the National Academy of Sciences 110(4), 1321-1326.
Min, A. & Czado, C. (2010), `Bayesian inference for multivariate
copulas using pair-copula constructions', Journal of Financial Econometrics 8(4), 511-546
Oh, D. H. & Patton, A. J. (2013), `Simulated method of moments estimation for copula-based multivariate models', Journal of the Ameri
an Statistics al Association 108(502), 689-700.
Omidi, M. & Mohammadzadeh, M. (2015), `A new method to build spatiotemporal covariance functions: analysis of ozone data', Statistical Papers (3), 115.
Tovar, J. R. (2012), `Eliciting beta prior distributions for binomial sampling', Rev. Bras. Biom 30(1), 159-172.
Tovar, J. R. & Achcar, J. A. (2011), `Indexes to measure dependence between clinical diagnostics tests: A comparative study', Revista Colombiana de Estadística 34, 433-450.
Tovar, J. R. & Achcar, J. A. (2012), `Two dependent diagnosti
tests: Use of copula functions in the estimation of the prevalence and performane test parameters', Revista Colombiana de Estadística 35(3), 331-347.
Tovar, J. R. & Achcar, J. A. (2013), `Dependence between two diagnosti
tests with copula function approach: a simulation study', Communications in Statistics-Simulation and Computation 42(2), 454-475.
Weib, G. (2011), `Copula parameter estimation by maximum-likelihood and minimum-distance estimators: a simulation study', Computational Statistics 26(1), 31-54.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Hüseyin ÜNÖZKAN, Mehmet YILMAZ. (2019). Construction of Continuous Bivariate Distribution by Transmuting Dependent Distribution. Cumhuriyet Science Journal, 40(4), p.860. https://doi.org/10.17776/csj.618236.
2. Aysegul Erem. (2020). Bivariate two sample test based on exceedance statistics. Communications in Statistics - Simulation and Computation, 49(9), p.2389. https://doi.org/10.1080/03610918.2018.1520868.
3. Luis Carlos Bravo Melo, Jennyfer Portilla Yela, José Rafael Tovar Cuevas. (2020). Using Copula Functions to Estimate The AUC for Two Dependent Diagnostic Tests. Revista Colombiana de Estadística, 43(2), p.315. https://doi.org/10.15446/rce.v43n2.80288.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2018 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






