Published

2019-01-01

A Bayesian Approach to Mixed Gamma Regression Models

Una aproximacion bayesiana para modelos de regresion mixtos Gamma

DOI:

https://doi.org/10.15446/rce.v42n1.69334

Keywords:

Bayesian analysis, Gamma distribution, Gamma regression, Mixed models (en)
Análisis bayesiano, Distribución Gamma, Regresión Gamma, Modelos mixtos (es)

Downloads

Authors

  • Marta Lucia Corrales Univerisdad Sergio Arboleda
  • Edilberto Cepeda-Cuervo
Gamma regression models are a suitable choice to model continuous variables that take positive real values. This paper presents a gamma regression model with mixed effects from a Bayesian approach. We use the parametrisation of the gamma distribution in terms of the mean and the shape parameter, both of which are modelled through regression structures that may involve fixed and random effects.  A computational implementation via Gibbs sampling is provided and illustrative examples (simulated and real data) are presented.
Los modelos de regresión gamma son una opción adecuada para modelar variables continuas que toman valores reales positivos. Este artículo presenta un modelo de regresión gamma con efectos mixtos desde un enfoque bayesiano. Utilizamos la parametrización de la distribución gamma en términos de la media y el parámetro de forma, los cuales se modelan a través de estructuras de regresión que pueden involucrar efectos fijos y aleatorios. Se proporciona una implementación computacional a través del muestreo de Gibbs y se presentan ejemplos ilustrativos (datos simulados y reales).

References

Albert, J. H. & Chib, S. (1993), ‘Bayesian analysis of binary and polychotomous response data’, Journal of the American statistical Association 88(422), 669–679.

Besag, J., Green, P., Higdon, D. & Mengersen, K. (1995), ‘Bayesian computation and stochastic systems’, Statistical science pp. 3–41.

Brooks, S. P. & Gelman, A. (1998), ‘General methods for monitoring convergence of iterative simulations’, Journal of computational and graphical statistics 7(4), 434–455.

Brown, H. & Prescott, R. (2014), Applied mixed models in medicine, John Wiley & Sons.

Cepeda-Cuervo, E., Migon, H. S., Garrido, L. & Achcar, J. A. (2014), ‘Generalized linear models with random effects in the two-parameter exponential family’, Journal of Statistical Computation and Simulation 84(3), 513–525.

Cepeda, E. (2001), Modelagem da variabilidade em modelos lineares generalizados, Ph.D. tesis, Universidade Federal do Rio do Janeiro.

Cepeda, E. C. & Gamerman, D. (2004), ‘Bayesian modeling of joint regressions for the mean and covariance matrix’, Biometrical journal 46(4), 430–440.

Cepeda, E. & Gamerman, D. (2005), ‘Bayesian methodology for modeling parameters in the two parameter exponential family’, Revista Estadistica 57(168-169), 93–105.

Cox, D. R. & Reid, N. (1987), ‘Parameter orthogonality and approximate conditional inference’, Journal of the Royal Statistical Society. Series B (Methodological) pp. 1–39.

De Jong, P., Heller, G. Z. et al. (2008), Generalized linear models for insurance data, Vol. 10, Cambridge University Press Cambridge.

Demidenko, E. (2013), Mixed models: theory and applications with R, John Wiley & Sons.

Figueroa-Zúñiga, J. I., Arellano-Valle, R. B. & Ferrari, S. L. (2013), ‘Mixed beta regression: A bayesian perspective’, Computational Statistics & Data Analysis 61, 137–147.

Fong, Y., Rue, H. & Wakefield, J. (2010), ‘Bayesian inference for generalized linear mixed models’, Biostatistics 11(3), 397–412.

Fonseca, T. C., Ferreira, M. A. & Migon, H. S. (2008), ‘Objective Bayesian analysis for the Student-t regression model’, Biometrika 95(2), 325–333.

Geweke, J. (1992), ‘Evaluating the accuracy of sampling-based approaches to calculation of moments (with discussion)’, Bayesian Statistics 4, 169–193.

Heidelberger, P. & Welch, P. D. (1981), ‘A spectral method for confidence interval generation and run length control in simulations’, Communications of the ACM 24(4), 233–245.

McCullagh, P. & Nelder, J. A. (1989), Generalized Linear Models, Chapman & Hall.

Plummer, M., Best, N., Cowles, K. & Vines, K. (2006), ‘CODA: convergence

diagnosis and output analysis for MCMC’, R news 6(1), 7–11.

R Core Team (2017), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.

Raffery, A. & Lewis, S. (1992), ‘One long run with diagnostics: Implementation strategies for markov chain monte carlo’, Statist. Sci 7, 493–497.

Ronquist, F. & Huelsenbeck, J. P. (2003), ‘Mrbayes 3: Bayesian phylogenetic inference under mixed models’, Bioinformatics 19(12), 1572–1574.

Thomas, A. (2006), ‘Making bugs open’, R news 6, 12–17.

Vonesh, E. F. (2006), ‘Mixed models: Theory and applications’.

How to Cite

APA

Corrales, M. L. & Cepeda-Cuervo, E. (2019). A Bayesian Approach to Mixed Gamma Regression Models. Revista Colombiana de Estadística, 42(1), 81–99. https://doi.org/10.15446/rce.v42n1.69334

ACM

[1]
Corrales, M.L. and Cepeda-Cuervo, E. 2019. A Bayesian Approach to Mixed Gamma Regression Models. Revista Colombiana de Estadística. 42, 1 (Jan. 2019), 81–99. DOI:https://doi.org/10.15446/rce.v42n1.69334.

ACS

(1)
Corrales, M. L.; Cepeda-Cuervo, E. A Bayesian Approach to Mixed Gamma Regression Models. Rev. colomb. estad. 2019, 42, 81-99.

ABNT

CORRALES, M. L.; CEPEDA-CUERVO, E. A Bayesian Approach to Mixed Gamma Regression Models. Revista Colombiana de Estadística, [S. l.], v. 42, n. 1, p. 81–99, 2019. DOI: 10.15446/rce.v42n1.69334. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/69334. Acesso em: 11 nov. 2025.

Chicago

Corrales, Marta Lucia, and Edilberto Cepeda-Cuervo. 2019. “A Bayesian Approach to Mixed Gamma Regression Models”. Revista Colombiana De Estadística 42 (1):81-99. https://doi.org/10.15446/rce.v42n1.69334.

Harvard

Corrales, M. L. and Cepeda-Cuervo, E. (2019) “A Bayesian Approach to Mixed Gamma Regression Models”, Revista Colombiana de Estadística, 42(1), pp. 81–99. doi: 10.15446/rce.v42n1.69334.

IEEE

[1]
M. L. Corrales and E. Cepeda-Cuervo, “A Bayesian Approach to Mixed Gamma Regression Models”, Rev. colomb. estad., vol. 42, no. 1, pp. 81–99, Jan. 2019.

MLA

Corrales, M. L., and E. Cepeda-Cuervo. “A Bayesian Approach to Mixed Gamma Regression Models”. Revista Colombiana de Estadística, vol. 42, no. 1, Jan. 2019, pp. 81-99, doi:10.15446/rce.v42n1.69334.

Turabian

Corrales, Marta Lucia, and Edilberto Cepeda-Cuervo. “A Bayesian Approach to Mixed Gamma Regression Models”. Revista Colombiana de Estadística 42, no. 1 (January 1, 2019): 81–99. Accessed November 11, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/69334.

Vancouver

1.
Corrales ML, Cepeda-Cuervo E. A Bayesian Approach to Mixed Gamma Regression Models. Rev. colomb. estad. [Internet]. 2019 Jan. 1 [cited 2025 Nov. 11];42(1):81-99. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/69334

Download Citation

CrossRef Cited-by

CrossRef citations6

1. F A Adam, A Kurnia, I G P Purnaba, I W Mangku, A M Soleh. (2021). Modeling The Amount of Insurance Claim using Gamma Linear Mixed Model with AR (1) random effect. Journal of Physics: Conference Series, 1863(1), p.012027. https://doi.org/10.1088/1742-6596/1863/1/012027.

2. Lizandra C. Fabio, Francisco J. A. Cysneiros, Gilberto A. Paula, Jalmar M. F. Carrasco. (2022). Hierarchical and multivariate regression models to fit correlated asymmetric positive continuous outcomes. Computational Statistics, 37(3), p.1435. https://doi.org/10.1007/s00180-021-01163-7.

3. Irwan Susanto, Nur Iriawan, Heri Kuswanto. (2022). On the Bayesian Mixture of Generalized Linear Models with Gamma-Distributed Responses. Econometrics, 10(4), p.32. https://doi.org/10.3390/econometrics10040032.

4. Nicholas Gala, Anna Mika, Michael Wilson, Jeremy Williams, Briggs Buchanan, Robert S. Walker, Michelle R. Bebber, Metin I. Eren. (2022). Experimental assessment of obsidian versus chert lanceolate projectile point durability and robusticity: Semi‐static fracture strength and dynamic impact. Archaeometry, 64(6), p.1307. https://doi.org/10.1111/arcm.12787.

5. Natália Caroline Costa de Oliveira, Vinícius Diniz Mayrink. (2024). Generalized mixed spatiotemporal modeling with a continuous response and random effect via factor analysis. Statistical Methods & Applications, 33(3), p.723. https://doi.org/10.1007/s10260-024-00755-z.

6. Michael A. Patten, Brittany Rae Benson. (2023). A broader flight season for Norway's Odonata across a century and a half. Oikos, 2023(9) https://doi.org/10.1111/oik.09882.

Dimensions

PlumX

Article abstract page views

667

Downloads

Download data is not yet available.