Published
A Bayesian Approach to Mixed Gamma Regression Models
Una aproximacion bayesiana para modelos de regresion mixtos Gamma
DOI:
https://doi.org/10.15446/rce.v42n1.69334Keywords:
Bayesian analysis, Gamma distribution, Gamma regression, Mixed models (en)Análisis bayesiano, Distribución Gamma, Regresión Gamma, Modelos mixtos (es)
Downloads
References
Albert, J. H. & Chib, S. (1993), ‘Bayesian analysis of binary and polychotomous response data’, Journal of the American statistical Association 88(422), 669–679.
Besag, J., Green, P., Higdon, D. & Mengersen, K. (1995), ‘Bayesian computation and stochastic systems’, Statistical science pp. 3–41.
Brooks, S. P. & Gelman, A. (1998), ‘General methods for monitoring convergence of iterative simulations’, Journal of computational and graphical statistics 7(4), 434–455.
Brown, H. & Prescott, R. (2014), Applied mixed models in medicine, John Wiley & Sons.
Cepeda-Cuervo, E., Migon, H. S., Garrido, L. & Achcar, J. A. (2014), ‘Generalized linear models with random effects in the two-parameter exponential family’, Journal of Statistical Computation and Simulation 84(3), 513–525.
Cepeda, E. (2001), Modelagem da variabilidade em modelos lineares generalizados, Ph.D. tesis, Universidade Federal do Rio do Janeiro.
Cepeda, E. C. & Gamerman, D. (2004), ‘Bayesian modeling of joint regressions for the mean and covariance matrix’, Biometrical journal 46(4), 430–440.
Cepeda, E. & Gamerman, D. (2005), ‘Bayesian methodology for modeling parameters in the two parameter exponential family’, Revista Estadistica 57(168-169), 93–105.
Cox, D. R. & Reid, N. (1987), ‘Parameter orthogonality and approximate conditional inference’, Journal of the Royal Statistical Society. Series B (Methodological) pp. 1–39.
De Jong, P., Heller, G. Z. et al. (2008), Generalized linear models for insurance data, Vol. 10, Cambridge University Press Cambridge.
Demidenko, E. (2013), Mixed models: theory and applications with R, John Wiley & Sons.
Figueroa-Zúñiga, J. I., Arellano-Valle, R. B. & Ferrari, S. L. (2013), ‘Mixed beta regression: A bayesian perspective’, Computational Statistics & Data Analysis 61, 137–147.
Fong, Y., Rue, H. & Wakefield, J. (2010), ‘Bayesian inference for generalized linear mixed models’, Biostatistics 11(3), 397–412.
Fonseca, T. C., Ferreira, M. A. & Migon, H. S. (2008), ‘Objective Bayesian analysis for the Student-t regression model’, Biometrika 95(2), 325–333.
Geweke, J. (1992), ‘Evaluating the accuracy of sampling-based approaches to calculation of moments (with discussion)’, Bayesian Statistics 4, 169–193.
Heidelberger, P. & Welch, P. D. (1981), ‘A spectral method for confidence interval generation and run length control in simulations’, Communications of the ACM 24(4), 233–245.
McCullagh, P. & Nelder, J. A. (1989), Generalized Linear Models, Chapman & Hall.
Plummer, M., Best, N., Cowles, K. & Vines, K. (2006), ‘CODA: convergence
diagnosis and output analysis for MCMC’, R news 6(1), 7–11.
R Core Team (2017), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.
Raffery, A. & Lewis, S. (1992), ‘One long run with diagnostics: Implementation strategies for markov chain monte carlo’, Statist. Sci 7, 493–497.
Ronquist, F. & Huelsenbeck, J. P. (2003), ‘Mrbayes 3: Bayesian phylogenetic inference under mixed models’, Bioinformatics 19(12), 1572–1574.
Thomas, A. (2006), ‘Making bugs open’, R news 6, 12–17.
Vonesh, E. F. (2006), ‘Mixed models: Theory and applications’.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. F A Adam, A Kurnia, I G P Purnaba, I W Mangku, A M Soleh. (2021). Modeling The Amount of Insurance Claim using Gamma Linear Mixed Model with AR (1) random effect. Journal of Physics: Conference Series, 1863(1), p.012027. https://doi.org/10.1088/1742-6596/1863/1/012027.
2. Lizandra C. Fabio, Francisco J. A. Cysneiros, Gilberto A. Paula, Jalmar M. F. Carrasco. (2022). Hierarchical and multivariate regression models to fit correlated asymmetric positive continuous outcomes. Computational Statistics, 37(3), p.1435. https://doi.org/10.1007/s00180-021-01163-7.
3. Irwan Susanto, Nur Iriawan, Heri Kuswanto. (2022). On the Bayesian Mixture of Generalized Linear Models with Gamma-Distributed Responses. Econometrics, 10(4), p.32. https://doi.org/10.3390/econometrics10040032.
4. Nicholas Gala, Anna Mika, Michael Wilson, Jeremy Williams, Briggs Buchanan, Robert S. Walker, Michelle R. Bebber, Metin I. Eren. (2022). Experimental assessment of obsidian versus chert lanceolate projectile point durability and robusticity: Semi‐static fracture strength and dynamic impact. Archaeometry, 64(6), p.1307. https://doi.org/10.1111/arcm.12787.
5. Natália Caroline Costa de Oliveira, Vinícius Diniz Mayrink. (2024). Generalized mixed spatiotemporal modeling with a continuous response and random effect via factor analysis. Statistical Methods & Applications, 33(3), p.723. https://doi.org/10.1007/s10260-024-00755-z.
6. Michael A. Patten, Brittany Rae Benson. (2023). A broader flight season for Norway's Odonata across a century and a half. Oikos, 2023(9) https://doi.org/10.1111/oik.09882.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2019 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






