Published

2019-01-01

A Method to Select Bivariate Copula Functions

Un método para seleccionar funciones cópula bivariadas

DOI:

https://doi.org/10.15446/rce.v42n1.71780

Keywords:

Copula functions, Selection method, discrimination of copulas, dependence measure, Ledwina measure (en)
Funciones de cópula, Método de selección, discriminación de cópulas, medida de dependencia, Medida Ledwina (es)

Downloads

Authors

  • José Rafael Tovar-Cuevas Universidad del Valle
  • Jennyfer Portilla-Yela Pontifica Universidad Javeriana
  • Jorge Alberto Achcar Universidade de Sao Paulo

Copula functions have been extensively used in applied statistics, becoming a good alternative for modeling the dependence of multivariate data. Each copula function has a different dependence structure. An important issue in these applications is the choice of an appropriate copula function model for each one; thus common classical or Bayesian discrimination methods might not be appropriate for determining the best copula. Considering only the special case of bivariate data, we propose a procedure obtained from a recently introduced dependence measure for selecting an appropriate copula for the statistical data analyses.

Las funciones de cópula se han utilizado ampliamente en las estadísticas aplicadas, convirtiéndose en una buena alternativa para modelar la dependencia de datos multivariantes. Cada función cópula tiene una estructura de dependencia diferente. Un problema importante en estas aplicaciones es la elección de un modelo de función de cópula apropiado para cada una; por lo tanto, los métodos comunes de discriminación clásica o bayesiana podrían no ser apropiados para determinar el mejor
cópula. Considerando únicamente el caso especial de datos bivariados, proponemos un procedimiento obtenido a partir de una medida de dependencia recientemente introducida para seleccionar una cópula apropiada para el análisis de datos estadísticos.

References

Arbenz, P. (2013), ‘Bayesian copulae distributions, with application to operational risk management-some comments’, Methodology and computing in applied probability 15(1), 105–108.

Bairamov, I., Kotz, S. & Kozubowski, T. (2003), ‘A new measure of linear local dependence’, Statistics: A Journal of Theoretical and Applied Statistics 37(3), 243–258.

Balakrishnan, N. & Lai, C.-D. (2009), Continuous Bivariate Distributions, Springer, Dordrecht.

Barnett, V. (1980), ‘Some bivariate uniform distributions’, Communications in statistics-theory and methods 9(4), 453–461.

Bjerve, S. & Doksum, K. (1993), ‘Correlation curves: measures of association as functions of covariate values’, The Annals of Statistics pp. 890–902.

Chang, K.-L. (2012), ‘The time-varying and asymmetric dependence between crude oil spot and futures markets: Evidence from the mixture copula-based arji-garch model’, Economic Modelling 29(6), 2298–2309.

Clayton, D. G. (1978), ‘A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence’, Biometrika 65(1), 141–151.

Corbella, S. & Stretch, D. D. (2013), ‘Simulating a multivariate sea storm using archimedean copulas’, Coastal Engineering 76, 68–78.

Deheuvels, P. (1981), ‘An asymptotic decomposition for multivariate distribution free tests of independence’, Journal of Multivariate Analysis 11(1), 102–113.

Drouet, M. & Kotz, S. (2001), Correlation and dependence, Imperial College Press, London.

Durante, F. & Sempi, C. (2015), Principles of copula theory, Chapman and Hall/CRC.

Frank, M. J. (1979), ‘On the simultaneous associativity of f(x; y) and x + y -f(x; y)’, Aequationes Mathematicae 19(1), 194–226.

Genest, C. & Rémillard, B. (2004), ‘Test of independence and randomness based on the empirical copula process’, Test 13(2), 335–369.

Goethals, K., Janssen, P. & Duchateau, L. (2008), ‘Frailty models and copulas: similarities and differences’, Journal of Applied Statistics 35(9), 1071–1079.

Gumbel, E. J. (1960a), ‘Bivariate exponential distributions’, Journal of the American Statistical Association 55(292), 698–707.

Gumbel, E. J. (1960b), ‘Distributions des valeurs extremes en plusiers dimensions’, Institut de statistique de l'Université de Paris. 9, 171–173.

Gumbel, E. J. (1961), ‘Bivariate logistic distributions’, Journal of the American Statistical Association 56(294), 335–349.

Hofert, M. (2008), ‘Sampling archimedean copulas’, Computational Statistics & Data Analysis 52(12), 5163–5174.

Hougaard, P. (1986), ‘A class of multivanate failure time distributions’, Biometrika 73(3), 671–678.

Janga Reddy, M. & Ganguli, P. (2012), ‘Risk assessment of hydroclimatic variability on groundwater levels in the manjara basin aquifer in india using

archimedean copulas’, Journal of Hydrologic Engineering 17(12), 1345–1357.

Jogdeo, K. (1982), ‘Concepts of dependence’, Encyclopedia of statistical sciences 2, 324–334.

Johnson, N. & Kotz, S. (1972), Distributions in Statistics: Continuous Multivariate Distributions, Wileg.

Kojadinovic, I., Yan, J. & Holmes, M. (2011), ‘Fast large-sample goodness-of-fit tests for copulas’, Statistica Sinica pp. 841–871.

Kowalczyk, T., Pleszczynska, E. et al. (1977), ‘Monotonic dependence functions of bivariate distributions’, The Annals of Statistics 5(6), 1221–1227.

Lancaster, H. O. (1982), ‘Dependence, measures and indices’, Encyclopedia of statistical sciences 2, 334–339.

Ledwina, T. (2015), Visualizing association structure in bivariate copulas using new dependence function, in ‘Stochastic Models, Statistics and Their Applications’, Springer, pp. 19–27.

Lojowska, A., Kurowicka, D., Papaefthymiou, G., van der Sluis, L. et al. (2012), ‘Stochastic modeling of power demand due to evs using copula’, IEEE Transactions on Power Systems 27(4), 1960.

Meintanis, S. G. (2007), ‘Test of fit for marshall-olkin distributions with applications’, Journal of Statistical Planning and inference 137(12), 3954–3963.

Nelsen, R. B. (2006), ‘An introduction to copulas’, Lecture Notes in Statistics, Springer.

Sklar, M. (1959), ‘Fonctions de repartition an dimensions et leurs marges’, Institut de statistique de l'Université de Paris 8, 229–231.

Topçu, Ç. (2016), ‘Comparison of some selection criteria for selecting bivariate archimedean copulas’, Afyon Kocatepe University Journal of Sciences and Engineering 16, 250–255.

Tovar, J. R. & Achcar, J. A. (2012), ‘Two dependent diagnostic tests: Use of

copula functions in the estimation of the prevalence and performance test

parameters’, Revista Colombiana de Estadística 35(3), 331–347.

Tovar, J. R. & Achcar, J. A. (2013), ‘Dependence between two diagnostic tests with copula function approach: a simulation study’, Communications in Statistics Simulation and Computation 42(2), 454–475.

Wang, Y.-C., Wu, J.-L. & Lai, Y.-H. (2013), ‘A revisit to the dependence structure between the stock and foreign exchange markets: A dependence-switching copula approach’, Journal of Banking & Finance 37(5), 1706–1719.

Weiss, G. (2011), 'Copula parameter estimation by maximum-likelihood and minimum-distance estimators: a simulation study', Computational Statistics 26(1), 31-54.

Xie, K., Li, Y. & Li, W. (2012), 'Modelling wind speed dependence in system reliability assessment using copulas', IET Renewable Power Generation 6(6), 392-399.

Zhang, Q., Xiao, M., Singh, V. P. & Chen, X. (2013), 'Copula-based risk evaluation of droughts across the pearl river basin, china', Theoretical and applied climatology 111(1-2), 119-131.

How to Cite

APA

Tovar-Cuevas, J. R., Portilla-Yela, J. & Achcar, J. A. (2019). A Method to Select Bivariate Copula Functions. Revista Colombiana de Estadística, 42(1), 61–80. https://doi.org/10.15446/rce.v42n1.71780

ACM

[1]
Tovar-Cuevas, J.R., Portilla-Yela, J. and Achcar, J.A. 2019. A Method to Select Bivariate Copula Functions. Revista Colombiana de Estadística. 42, 1 (Jan. 2019), 61–80. DOI:https://doi.org/10.15446/rce.v42n1.71780.

ACS

(1)
Tovar-Cuevas, J. R.; Portilla-Yela, J.; Achcar, J. A. A Method to Select Bivariate Copula Functions. Rev. colomb. estad. 2019, 42, 61-80.

ABNT

TOVAR-CUEVAS, J. R.; PORTILLA-YELA, J.; ACHCAR, J. A. A Method to Select Bivariate Copula Functions. Revista Colombiana de Estadística, [S. l.], v. 42, n. 1, p. 61–80, 2019. DOI: 10.15446/rce.v42n1.71780. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/71780. Acesso em: 9 nov. 2025.

Chicago

Tovar-Cuevas, José Rafael, Jennyfer Portilla-Yela, and Jorge Alberto Achcar. 2019. “A Method to Select Bivariate Copula Functions”. Revista Colombiana De Estadística 42 (1):61-80. https://doi.org/10.15446/rce.v42n1.71780.

Harvard

Tovar-Cuevas, J. R., Portilla-Yela, J. and Achcar, J. A. (2019) “A Method to Select Bivariate Copula Functions”, Revista Colombiana de Estadística, 42(1), pp. 61–80. doi: 10.15446/rce.v42n1.71780.

IEEE

[1]
J. R. Tovar-Cuevas, J. Portilla-Yela, and J. A. Achcar, “A Method to Select Bivariate Copula Functions”, Rev. colomb. estad., vol. 42, no. 1, pp. 61–80, Jan. 2019.

MLA

Tovar-Cuevas, J. R., J. Portilla-Yela, and J. A. Achcar. “A Method to Select Bivariate Copula Functions”. Revista Colombiana de Estadística, vol. 42, no. 1, Jan. 2019, pp. 61-80, doi:10.15446/rce.v42n1.71780.

Turabian

Tovar-Cuevas, José Rafael, Jennyfer Portilla-Yela, and Jorge Alberto Achcar. “A Method to Select Bivariate Copula Functions”. Revista Colombiana de Estadística 42, no. 1 (January 1, 2019): 61–80. Accessed November 9, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/71780.

Vancouver

1.
Tovar-Cuevas JR, Portilla-Yela J, Achcar JA. A Method to Select Bivariate Copula Functions. Rev. colomb. estad. [Internet]. 2019 Jan. 1 [cited 2025 Nov. 9];42(1):61-80. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/71780

Download Citation

CrossRef Cited-by

CrossRef citations4

1. Giulia Risca, Stefania Galimberti, Paola Rebora, Alessandro Cattoni, Maria Grazia Valsecchi, Giulia Capitoli. (2025). Archimedean Copulas: A Useful Approach in Biomedical Data—A Review with an Application in Pediatrics. Stats, 8(3), p.69. https://doi.org/10.3390/stats8030069.

2. B. Vineshkumar, N. Unnikrishnan Nair. (2021). Inferring association from reliability functions: An approach based on copulas. Brazilian Journal of Probability and Statistics, 35(3) https://doi.org/10.1214/20-BJPS491.

3. Friday AGU, Salih ÇELEBİOĞLU. (2023). Transformed Pair Copula Construction of Pareto Copula and Applications. Gazi University Journal of Science, 36(2), p.933. https://doi.org/10.35378/gujs.967577.

4. Marcos Vinicius de Oliveira Peres, Jorge Alberto Achcar, Edson Zangiacomi Martinez. (2020). Bivariate lifetime models in presence of cure fraction: a comparative study with many different copula functions. Heliyon, 6(6), p.e03961. https://doi.org/10.1016/j.heliyon.2020.e03961.

Dimensions

PlumX

Article abstract page views

616

Downloads

Download data is not yet available.