Published
Some Recent Developments in Inference for Geostatistical Functional Data
Algunos desarrollos recientes en inferencia para datos funcionales geoestadísticos
DOI:
https://doi.org/10.15446/rce.v42n1.77058Keywords:
Functional data, Spatial statistics (en)Datos funcionales, Estadística espacial (es)
Downloads
We review recent developments related to inference
for functions defined at spatial locations. We also consider
time series of functions defined at irregularly distributed
spatial points or on a grid. We focus on kriging, estimation
of the functional mean and principal components, and significance
testing, giving special attention to testing spatio--temporal
separability in the context of functional data. We also highlight
some ideas related to extreme value theory for spatially indexed functional
time series.
References
Aston, J., Pigoli, D. & Tavakoli, S. (2016), ‘Tests for separability in nonparametric covariance operators of random surfaces’, The Annals of Statistics 6, 1906–1948.
Beirlant, J., Goegebeur, Y., Segers, J. & Teugels, J. (2006), Statistics of Extremes: Theory and Applications, John Wiley & Sons.
Caballero, W., Giraldo, R. & Mateu, J. (2013), ‘A universal kriging approach for spatial functional data’, Stochastic Environmental Research and Risk Assessment 27, 1553–1563.
Constantinou, P., Kokoszka, P. & Reimherr, M. (2017), ‘Testing separability of space-time functional processes’, Biometrika 104, 425–437.
Csörgő, M. & Horváth, L. (1997), Limit Theorems in Change-Point Analysis,
Wiley.
Delicado, P., Giraldo, R., Comas, C. & Mateu, J. (2010), ‘Statistics for spatial
functional data: some recent contributions’, Environmetrics 21, 224–239.
French, J., Kokoszka, P., Stoev, S. & Hall, L. (2019), ‘Quantifying the risk of
heat waves using extreme value theory and spatio-temporal functional data’, Computational Statistics and Data Analysis 131, 176–193.
Gelfand, A. E., Diggle, P. J., Fuentes, M. & Guttorp, P., eds (2010), Handbook of Spatial Statistics, CRC Press.
Gromenko, O. & Kokoszka, P. (2012), ‘Testing the equality of mean functions of spatially distributed curves’, Journal of the Royal Statistical Society (C) 61, 715–731.
Gromenko, O. & Kokoszka, P. (2013), ‘Nonparametric inference in small data sets of spatially indexed curves with application to ionospheric trend determination’, Computational Statistics and Data Analysis 59, 82–94.
Gromenko, O., Kokoszka, P. & Reimherr, M. (2017), ‘Detection of change in the spatiotemporal mean function’, Journal of the Royal Statistical Society (B) 79, 29–50.
Gromenko, O., Kokoszka, P. & Sojka, J. (2017), ‘Evaluation of the global cooling trend in the ionosphere using functional regression models with incomplete curves’, The Annals of Applied Statistics 11.
Gromenko, O., Kokoszka, P., Zhu, L. & Sojka, J. (2012), ‘Estimation and testing for spatially indexed curves with application to ionospheric and magnetic field trends’, The Annals of Applied Statistics 6, 669–696.
Hörmann, S. & Kokoszka, P. (2013), ‘Consistency of the mean and the principal components of spatially distributed functional data’, Bernoulli 19, 1535–1558.
Horváth, L. & Kokoszka, P. (2012), Inference for Functional Data with Applications, Springer.
Kokoszka, P. & Reimherr, M. (2017), Introduction to Functional Data Analysis, CRC Press.
Liu, C., Ray, S. & Hooker, G. (2017), ‘Functional principal components analysis of spatially correlated data’, Statistics and Computing 27, 1639–1654.
Lu, N. & Zimmerman, D. (2005), ‘The likelihood ratio test for a separable covariance matrix’, Statistics & Probability Letters 73, 449–457.
Menafoglio, A., Secchi, P. & Rosa, M. D. (2013), ‘A universal kriging predictor for spatially dependent functional data of a hilbert space’, Electronic Journal of Statistics 7, 2209–2240.
Mitchell, M. W., Genton, M. G. & Gumpertz, M. L. (2006), ‘A likelihood ratio test for separability of covariances’, Journal of Multivariate Analysis 97, 1025–1043.
Rishbeth, H. (1990), ‘A greenhouse effect in the ionosphere?’, Planetary and Space Science 38, 945–948.
Roble, R. G. & Dickinson, R. E. (1989), ‘How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?’, 16, 1441–1444.
Schabenberger, O. & Gotway, C. A. (2005), Statistical Methods for Spatial Data Analysis, Chapman & Hall/CRC.
Sherman, M. (2011), Spatial Statistics and Spatio–Temporal Data: Covariance Functions and Directional Properties, Wiley.
Wackernagel, H. (2003), Multivariate Geostatistics, Springer.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Jeimy-Paola Aristizabal, Ramón Giraldo, Jorge Mateu. (2019). Analysis of variance for spatially correlated functional data: Application to brain data. Spatial Statistics, 32, p.100381. https://doi.org/10.1016/j.spasta.2019.100381.
2. Heng-Hui Lue, ShengLi Tzeng. (2023). Interpretable, predictive spatio-temporal models via enhanced pairwise directions estimation. Journal of Applied Statistics, 50(14), p.2914. https://doi.org/10.1080/02664763.2022.2147150.
3. Alexander Long, Meredith King, Ana-Maria Staicu. (2025). Spatial functional principal component analysis for spatially-indexed curves observed on closed spatial domain. Electronic Journal of Statistics, 19(1) https://doi.org/10.1214/24-EJS2342.
4. Noritoshi Arai, Hidetoshi Matsui, Toshihiro Misumi, Sadanori Konishi. (2024). Multivariate Functional Data Clustering for Spatio-temporal Data. Ouyou toukeigaku, 53(2), p.59. https://doi.org/10.5023/jappstat.53.59.
5. Heesang Lee, Dagun Oh, Sunhwa Choi, Jaewoo Park. (2025). Bayesian Function-on-Function Regression for Spatial Functional Data. Bayesian Analysis, -1(-1) https://doi.org/10.1214/25-BA1532.
6. Zhou Zhou, Holger Dette. (2023). Statistical inference for high-dimensional panel functional time series. Journal of the Royal Statistical Society Series B: Statistical Methodology, 85(2), p.523. https://doi.org/10.1093/jrsssb/qkad015.
7. Gregory Bopp, John Ensley, Piotr Kokoszka, Matthew Reimherr. (2022). Geostatistical Functional Data Analysis. Wiley Series in Probability and Statistics. , p.351. https://doi.org/10.1002/9781119387916.ch14.
8. Drew Yarger, Stilian Stoev, Tailen Hsing. (2022). A functional-data approach to the Argo data. The Annals of Applied Statistics, 16(1) https://doi.org/10.1214/21-AOAS1477.
9. Oluwasegun Taiwo Ojo, Marc G. Genton. (2025). Functional multiple-point simulation. Computers & Geosciences, 195, p.105767. https://doi.org/10.1016/j.cageo.2024.105767.
10. Veronika Římalová, Eva Fišerová, Alessandra Menafoglio, Alessia Pini. (2022). Inference for spatial regression models with functional response using a permutational approach. Journal of Multivariate Analysis, 189, p.104893. https://doi.org/10.1016/j.jmva.2021.104893.
11. Hidetoshi Matsui, Kohei Yamamoto, Yuya Yamakawa. (2025). Sparse estimation in kriging for functional data. Stochastic Environmental Research and Risk Assessment, 39(6), p.2413. https://doi.org/10.1007/s00477-025-02976-4.
12. Sergio Martínez, Ramón Giraldo, Víctor Leiva. (2019). Birnbaum–Saunders functional regression models for spatial data. Stochastic Environmental Research and Risk Assessment, 33(10), p.1765. https://doi.org/10.1007/s00477-019-01708-9.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2019 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






