Published
Complete-Linkage Clustering Analysis of Surrogate Measures for Road Safety Assessment in Roundabouts
Análisis de conglomerados mediante vecinos más lejanos en medidas sustitutas para la evaluación de seguridad vial en glorietas
DOI:
https://doi.org/10.15446/rce.v44n1.81937Keywords:
Cluster analysis, Complete linkage, Discriminant analysis, Principal Component analysis (en)Análisis de componentes principales, Análisis de conglomerado, Análisis discriminante, Simulación de la seguridad vial, Vecino más lejano (es)
Downloads
This paper presents the findings of a comparative road safety assessment between an existing two-lane roundabout and proposed basic turboroundabout, both designed for the same intersection, to determine which one is safer, based on traffic conflicts and surrogate safety measures. We performed microsimulation models in VISSIM to replicate the fieldobserved traffic operation, and the SSAM to determinate six surrogate measures. We validated the consistency of values obtained by several statistical analyzes. The number of conflicts was 72% lower at the turboroundabout. Through a complete-linkage clustering analysis and Euclidean distances of the surrogate measures, we found that traffic conflicts at the turbo-roundabout tend to cluster in a group, whereas conflicts at the roundabout are scattered, suggesting better organization of traffic flows at the turbo-roundabout. Three-dimensional graphical analysis of clusters and its centroids allowed verifying that surrogate measures point out a safer operation at the turbo-roundabout, even though it presented higher operating speeds. Reducing the dimensionality by principal components analysis, the cumulative variance for the first two components (87.72%) allowed observing results on a two-dimensional graph and their clusters. To endorse conflicts classification, resulting of clusters, we used discriminant analysis. Results validate the methodology and the safety benefits of the turbo-roundabout.
Este artículo presenta los hallazgos de una evaluación comparativa de seguridad vial entre una glorieta clásica existente y una turboglorieta
propuesta, en la misma intersección, para determinar cuál es más segura, con base en conflictos de tráfico y medidas sustitutas. Elaboramos modelos en VISSIM para recrear la operación del tráfico observada en campo y SSAM
para determinar seis medidas sustitutas. Validamos la consistencia de los resultados por varios análisis estadísticos. El número de conflictos fue 72%
menor en la turboglorieta. Mediante un análisis de conglomerados de las medidas sustitutas, los conflictos en la turboglorieta tienden a agruparse en
un clúster, mientras que en la glorieta éstos están dispersos, sugiriendo una mejor organización de los flujos de tráfico en la turboglorieta. El análisis
gráfico tridimensional de conglomerados y centroides permitió verificar que las medidas sustitutas indican una operación más segura en la turboglorieta, a pesar de presentar velocidades de aproximación más altas. Reduciendo la
dimensionalidad, mediante análisis de componentes principales, la varianza acumulada de los dos primeros componentes (87.72%) permitió observar los resultados en dos dimensiones. Mediante análisis discriminante, respaldamos la clasificación de conflictos resultante de los clústeres. Los resultados validan la metodología y los beneficios en seguridad de la turboglorieta.
References
Archer, J. (2005), Methods for the Assessment and Prediction of Traffic Safety at Urban Intersections and their Application in Micro-simulation Modelling, PhD thesis, Royal institute of technology. https://www.divaportal.org/smash/get/diva2:7295/FULLTEXT01.pdf
Archer, J. and Kosonen, I. (2000), The potential of Micro-Simulation Modelling in Relation to Traffic Safety Assessment, in ‘ESS Conference Proceedings’, Centre for Traffic Simulation Research (CTR), Hamburg, p. 6. https://citeseerx.ist.psu.edu/viewdoc/versions?doi=10.1.1.577.9626
Balado, J., Díaz-Vilariño, L., Arias, P. and Novo, A. (2019), ‘A safety analysis of roundabouts and turbo roundabouts based on petri nets’, Traffic Injury Prevention 20(4), 400–405. 10.1080/15389588.2019.1594208 DOI: https://doi.org/10.1080/15389588.2019.1594208
Barajas, F. H. and Morales, J. C. C. (2009), ‘Comparison for three classification techniques’, Revista Colombiana de Estadística 32(2), 247–265. https://revistas.unal.edu.co/index.php/estad/article/view/29771/30019
Brown, G., Chau, A., DeCastilho, B. and Navin, F. (1984), Traffic conflict procedure and validation for road safety program. On behalf of the Insurance Corporation of the Province of British Columbia, Technical report, University of British Columbia, Vancouver. https://library.swov.nl/action/front/cardweb?id=39893
Bulla-Cruz, L. A. and Castro, W. (2011), Analysis and comparison between two-lane roundabouts and turbo roundabouts based on a road safety audit methodology and microsimulation: a case study in urban area, in ‘3rd International Conference on Road Safety and Simulation’, Purdue University & Transportation Research Board, Indianapolis, p. 12. http://onlinepubs.trb.org/onlinepubs/conferences/2011/RSS/2/Bulla,L.pdf
Bulla-Cruz, L. A., Laureshyn, A. and Lyons, L. (2020), ‘Event-based road safety assessment: A novel approach towards risk microsimulation in roundabouts’, Measurement 165, 1–13. 10.1016/j.measurement.2020.108192 DOI: https://doi.org/10.1016/j.measurement.2020.108192
Bulla-Cruz, L. A. and Lyons, L. (2020), Estado del arte en la evaluación de la seguridad vial por medio de conflictos de tráfico: aplicación al estudio de caso de una glorieta en Bogotá, in Dirección Nacional Simit, ed., ‘Transitemos 2018’, 5th edn, Federación Colombiana de Municipios, Bogotá, chapter 1, pp. 10–26. https://www.simit.org.co/estadisticas
Cafiso, S., Graziano, A. D., Cava, G. L. and Pappalardo, G. (2013), ‘Costeffectiveness Evaluation of Different Safety Interventions Strategies on Two-Lane Rural Highways’, 4th International Symposium on Highway Geometric Design p. 14. https://trid.trb.org/view.aspx?id=1100630
Campisi, T., Tesoriere, G. and Canale, A. (2018), ‘The variability of Level Of Service and Surrogate Safety Assessment of urban turbo - roundabout with BRT system’, Journal of Multidisciplinary Engineering Science and Technology 5(10), 8861–8869. http://www.jmest.org/wpcontent/uploads/JMESTN42352690.pdf
Dowling, R., Skabardonis, A. and Alexiadis, V. (2004), ‘Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Microsimulation Modeling Software’, Rep. No. FHWA-HRT-04-040, U.S. DOT, Federal Highway Administration, Washington, D.C III(July), 146. https://ops.fhwa.dot.gov/trafficanalysistools/tat_vol3/vol3_guidelines.pdf
Elhassy, Z., Abou-Senna, H., Shaaban, K. and Radwan, E. (2020), ‘The implications of converting a high-volume multilane roundabout into a turbo roundabout’, Journal of Advanced Transportation 2020(Article ID 5472806), 12. 10.1155/2020/5472806 DOI: https://doi.org/10.1155/2020/5472806
Everitt, B. S., Landau, S., Leese, M. and Stahl, D. (2011), Cluster analysis: Fifth edition, 5 edn, Wiley, London. DOI: https://doi.org/10.1002/9780470977811
Fortuijn, L. G. H. (2009), ‘Turbo Roundabouts: Design Principles and Safety Performance’, Transportation research record 2096(1), 16–24. 10.3141/2096-03 DOI: https://doi.org/10.3141/2096-03
Galili, T. (2015), ‘dendextend: An R package for visualizing, adjusting and comparing trees of hierarchical clustering’, Bioinformatics 31(22), 3718–3720. 10.1093/bioinformatics/btv428 DOI: https://doi.org/10.1093/bioinformatics/btv428
Gallelli, V. and Vaiana, R. (2019), ‘Safety improvements by converting a standard roundabout with unbalanced flow distribution into an egg turbo roundabout: Simulation approach to a case study’, Sustainability 11(2), 466. 10.3390/su11020466 DOI: https://doi.org/10.3390/su11020466
Gettman, D. and Head, L. (2003), Surrogate safety measures from traffic simulation models, in ‘Statistical Methods and Modeling and Safety Data, Analysis, and Evaluation: Safety and Human Performance’, Transportation Research Record, U. S. Department of Transportation. Federal Highway Administration, pp. 104–115. http://www.fhwa.dot.gov/publications/research/safety/03050/03050.pdf DOI: https://doi.org/10.3141/1840-12
Gettman, D., Pu, L., Sayed, T. and Shelby, S. (2008), Surrogate Safety Assessment Model and Validation: Final Report, Technical report, FHWA, McLean, VA. http://www.fhwa.dot.gov/publications/research/safety/08051/08051.pdf
Lenin Bulla-Cruz, Liliana Lyons & Enrique Darghan Habtemichael, F. G. and De Picado Santos, L. (2014), ‘Crash risk evaluation of aggressive driving on motorways: Microscopic traffic simulation approach’, Transportation Research Part F: Traffic Psychology and Behaviour. 10.1016/j.trf.2013.12.022
Hatami, H. and Aghayan, I. (2017), ‘Traffic efficiency evaluation of elliptical roundabout compared with modern and turbo roundabouts considering traffic signal control’, Promet Traffic&Transportation 29(1), 1–11. 10.7307/ptt.v29i1.2053 DOI: https://doi.org/10.7307/ptt.v29i1.2053
Hayward, J. C. (1972), ‘Near-miss determination through use of a scale of danger’, Highway Research Record 1(384), 24–34. http://onlinepubs.trb.org/Onlinepubs/hrr/1972/384/384-004.pdf
Huang, F., Liu, P., Yu, H. and Wang, W. (2013), ‘Identifying if VISSIM simulation model and SSAM provide reasonable estimates for field measured traffic conflicts at signalized intersections’, Accident Analysis and Prevention 50, 1014–1024. 10.1016/j.aap.2012.08.018 DOI: https://doi.org/10.1016/j.aap.2012.08.018
Hydén, C. (1987), ‘The Development of a Method for Traffic Safety Evaluation: the Swedish Traffic Conflict Technique’.
Johnson, R. A. and Wichern, D. W. (2007), Applied Multivariate Statistical Analysis, Vol. 47, 6 edn, Pearson Prentice Hall, New Jersey. http://pubs.amstat.org/doi/abs/10.1198/tech.2005.s319
Johnsson, C., Laureshyn, A. and De Ceunynck, T. (2018), ‘In search of surrogate safety indicators for vulnerable road users: a review of surrogate safety indicators’. 10.1080/01441647.2018.1442888 DOI: https://doi.org/10.1080/01441647.2018.1442888
Khasawneh, M. A. and Alsaleh, N. M. (2018), ‘Turbo Roundabout Usage in Lieu of Conventional Roundabouts for the Jordanian Traffic Conditions’, International Journal of Civil Engineering 16, 1725–1738. 10.1007/s40999-018-0330-z DOI: https://doi.org/10.1007/s40999-018-0330-z
Koorey, G., Carpenter, M. and Appleton, I. (2003), Safety Audits of Existing Roads Database, Technical report, Opus International Consultants Ltd, Central Laboratories, Lower Hutt, Christchurch. https://www.transportationgroup.nz/papers/2003/06_Glen_Koorey_Database.pdf
Kraay, J. H., Horst, A. R. A., Der, V. and Oppe, S. (2013), Manual conflict observation technique DOCTOR, Technical report, Foundation Road safety for all, Voorburg. https://repository.tudelft.nl/view/tno/uuid%3Aedbed3f6-5aab-453d-bb53-d237f6abbe3b
Laureshyn, A., De Ceunynck, T., Karlsson, C., Svensson, Å. and Daniels, S. (2017), ‘In search of the severity dimension of traffic events: Extended Delta-V as a traffic conflict indicator’, Accident Analysis and Prevention 98, 46–56. 10.1016/j.aap.2016.09.026 DOI: https://doi.org/10.1016/j.aap.2016.09.026
Laureshyn, A. & Varhelyi, A. (2018), The Swedish Traffic Conflict technique: observer’s manual, Technical report, Transport & Roads, Department of Technology & Society, Faculty of Engineering, LTH, Lund University, Lund. http://www.tft.lth.se/fileadmin/tft/images/Update_2018/Swedish_TCT_Manual.pdf
Liu, Q., Deng, J., Shen, Y., Wang, W., Zhang, Z. & Lu, L. (2020), ‘Safety and efficiency analysis of turbo roundabout with simulations based on the lujiazui roundabout in Shanghai’, Sustainability 12(7479), 16. 10.3390/su12187479 DOI: https://doi.org/10.3390/su12187479
López, F. (2011), ‘Wherein are shown some results of autorship attribution to cervantes’ work’, Revista Colombiana de Estadistica 34(1), 15–37. https://revistas.unal.edu.co/index.php/estad/article/view/29882/30103
Mauro, R., Cattani, M. & Guerrieri, M. (2015), ‘Evaluation of the safety performance of turbo roundabouts by means of a potential accident rate model’, The Baltic Journal of Road and Bridge Engineering 10(1), 28–38. 10.3846/bjrbe.2015.04 DOI: https://doi.org/10.3846/bjrbe.2015.04
McDowell, M. R. C., Wennell, J., Storr, P. A. & Darzentas, J. (1983), Gap acceptance and traffic conflict simulation as a measure of risk, Technical report, Transport and Road Research Laboratory, Berkshire, England. https://trid.trb.org/view.aspx?id=198501
Meister, M. & Koorey, G. (2003), Corridor Safety Performance Measures, in ‘Bay Roads Exposed Conference’, Paper for the Bay Roads Exposed Conference, Opus International Consultants, Ltd., and Opus Central Labs., Rotorua, p. 7. http://www.wbopdc.govt.nz/NR/rdonlyres/7286D592-7B59-4278-8EAFB65E252B45CE/0/GlenKoorey.pdf
Milligan, G. W. & Cooper, M. C. (1988), ‘A study of standardization of variables in cluster analysis’, Journal of Classification 5(2), 181–204. 10.1007/BF01897163%0A DOI: https://doi.org/10.1007/BF01897163
Ministerio de Transporte - INVÍAS (2008), Manual de diseño geométrico de carreteras, INVIAS, Bogotá. https://www.invias.gov.co/index.php/archivo-ydocumentos?task=doc_download&gid=985
Moore, M. K. (2013), Sex Estimation and Assessment, in ‘Research Methods in Human Skeletal Biology’, Elsevier Inc., pp. 91–116. 10.1016/B978-0-12-385189-5.00004-2 DOI: https://doi.org/10.1016/B978-0-12-385189-5.00004-2
Pardo, C. E. & del Campo, P. C. (2007), ‘Combination of factorial methods and cluster analysis in R: The package factoclass’, Revista Colombiana de Estadistica 30(2), 231–245.
Parker, M. R. & Zegeer, C. V. (1989), Traffic conflict techniques for safety and operation, Technical report, Federal Highway Administration - FHWA, McLean, Virginia. Publication No. FHWA-IP-88-027. https://www.fhwa.dot.gov/publications/research/safety/88027/88027.pdf
Pérez, R. A., Lera, L. & Boquet, A. (2006), ‘Double principal components analysis for categorical data and its application to a migration study’, Revista Colombiana de Estadistica 29(1), 17–34.
PTV AG (2012), VISSIM 5.40 User Manual, PTV Planung Transport Verkehr AG, Karlsruhe.
Pu, L. & Joshi, R. (2008), Surrogate Safety Assessment Model (SSAM): Software User Manual, Technical report, Federal Highway Administration, McLean, VA. https://www.fhwa.dot.gov/publications/research/safety/08050/
Punj, G. & Stewart, D. W. (1983), ‘Cluster Analysis in Marketing Research: Review and Suggestions for Application’, Journal of Marketing Research 20(2), 134. 10.2307/3151680 DOI: https://doi.org/10.2307/3151680
R Core Team & contributors Worldwide (2019), ‘The R Stats Package’. https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html
Revelle, W. (2018), ‘Procedures for Psychological, Psychometric, and Personality Research’. https://cran.r-project.org/web/packages/psych/psych.pdf
Sánchez, L. G., Osorio, G. A. & Suárez, J. F. (2008), ‘Introduction to kernel PCA and other spectral methods applied to unsupervised learning’, Revista Colombiana de Estadistica 31(1), 19–40.
Sayed, T. & Zein, S. (1999), ‘Traffic conflict standards for intersections’, Transportation Planning and Technology 22, 309–323. 10.1080/03081069908717634 DOI: https://doi.org/10.1080/03081069908717634
Silva, A. B., Vasconcelos, L. & Santos, S. (2014), ‘Moving from Conventional Roundabouts to Turbo-roundabouts’, Procedia - Social and Behavioral Sciences 111, 137–146. 10.1016/j.sbspro.2014.01.046 DOI: https://doi.org/10.1016/j.sbspro.2014.01.046
Tarko, A., Davis, G., Saunier, N., Sayed, T. & Washington, S. (2009), Surrogate measures of safety, white paper, Technical report, ANB20(3) Subcommittee on Surrogate Measures of Safety, Washington, D.C. https://www.researchgate.net/publication/245584894_Surrogate_Measures_of_Safety
Torres, A., Torres, F. & Pardillo, J. M. (2010), ‘Risk classification model in rural T-form intersections and time to evasion evaluation as surrogate safety measure’, Revista Ingeniería de Construcción 25(3), 353–370. http://www.ricuc.cl/index.php/ric/article/view/TORRES DOI: https://doi.org/10.4067/S0718-50732010000300002
Vasconcelos, L., Silva, A. B., Seco, Á. M., Fernandes, P. & Coelho, M. C. (2014), ‘Turbo roundabouts: Multicriterion assessment on intersection capacity, safety and emissions’, Transportation Research Record: Journal of the Transportation Research Board 2402(1), 28–37. 10.3141/2402-04 DOI: https://doi.org/10.3141/2402-04
Washington, S., Karlaftis, M. & Mannering, F. (2011), Statistical and Econometric Methods for Transportation Data Analysis, 2 edn, CRC Press Company, Boca Raton, FL.
Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y. & Zemla, J. (2017), ‘Visualization of a Correlation Matrix’. https://cran.rproject.org/web/packages/corrplot/corrplot.pdf
Zhou, S., Sun, J., An, X. & Li, K. (2011), ‘The development of a conflict hazardous assessment model for evaluating urban intersection safety’, Transport 26(2), 216–223. 10.3846/16484142.2011.58949 DOI: https://doi.org/10.3846/16484142.2011.589494
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Fausto Molina-Gómez, António Viana da Fonseca, Cristiana Ferreira, Fernanda Sousa, Lenin Alexander Bulla-Cruz. (2021). Defining the soil stratigraphy from seismic piezocone data: A clustering approach. Engineering Geology, 287, p.106111. https://doi.org/10.1016/j.enggeo.2021.106111.
2. Yueying Shen. (2023). Innovative Computing Vol 1 - Emerging Topics in Artificial Intelligence. Lecture Notes in Electrical Engineering. 1044, p.993. https://doi.org/10.1007/978-981-99-2092-1_127.
3. Maria Luisa Tumminello, Elżbieta Macioszek, Anna Granà. (2024). Insights into Simulated Smart Mobility on Roundabouts: Achievements, Lessons Learned, and Steps Ahead. Sustainability, 16(10), p.4079. https://doi.org/10.3390/su16104079.
4. Lihua Lv, Daqing Gong. (2022). RFID Data Analysis and Evaluation Based on Big Data and Data Clustering. Computational Intelligence and Neuroscience, 2022, p.1. https://doi.org/10.1155/2022/3432688.
5. Hussein Mahdi Abed, Hussein Ali Ewadh. (2021). Coupling Visual Simulation Model (VISSIM) with Surrogate Safety Assessment Model (SSAM) to Evaluate Safety at Signalized Intersections.. Journal of Physics: Conference Series, 1973(1), p.012234. https://doi.org/10.1088/1742-6596/1973/1/012234.
6. Salvatore Leonardi, Natalia Distefano. (2023). Turbo-Roundabouts as an Instrument for Improving the Efficiency and Safety in Urban Area: An Italian Case Study. Sustainability, 15(4), p.3223. https://doi.org/10.3390/su15043223.
7. Inhwan Han, D T Pham. (2022). Safety analysis of roundabouts and avoidance of conflicts for intersection-advanced driver assistance systems. Cogent Engineering, 9(1) https://doi.org/10.1080/23311916.2022.2112813.
8. Sakon Klongboonjit, Tossapol Kiatcharoenpol. (2024). Application of Two-Step Entropy–TOPSIS Method and Complete Linkage Clustering for Water-Pumping Windmill Investment on Thailand Peninsula. Sustainability, 16(23), p.10616. https://doi.org/10.3390/su162310616.
9. Lenin Alexander Bulla-Cruz, Liliana Lyons, Enrique Darghan. (2023). Microscopic Traffic Risk Assessment at Signalized Intersections of a Bus Rapid Transit System. Journal of Transportation Engineering, Part A: Systems, 149(6) https://doi.org/10.1061/JTEPBS.TEENG-7427.
10. Binghong Pan, Hu Chai, Juan Liu, Yang Shao, Shangru Liu, Ranyang Zhang. (2022). Evaluating Operational Features of Multilane Turbo Roundabouts with an Entropy Method. Journal of Transportation Engineering, Part A: Systems, 148(10) https://doi.org/10.1061/JTEPBS.0000684.
11. Abhijnan Maji, Indrajit Ghosh, Satish Chandra. (2024). Development of conflict-based safety performance function for safety evaluation of urban roundabouts in India. Canadian Journal of Civil Engineering, https://doi.org/10.1139/cjce-2024-0314.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2021 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).