Published

2020-07-01

An Optimal Design Criterion for Within-Individual Covariance Matrices Discrimination and Parameter Estimation in Nonlinear Mixed Effects Models

Un criterio de diseño optimal para discriminación de matrices de covarianza intra-individual y estimación de parámetros en modelos de efectos mixtos no lineales

DOI:

https://doi.org/10.15446/rce.v43n2.81938

Keywords:

Compound criteria, D-optimality, Mixed eects models, Optimal designs, T-optimality (en)
Criterios compuestos, Diseños óptimos, D-optimalidad, Modelo de efectos mixtos, T-optimalidad (es)

Downloads

Authors

In this paper, we consider the problem of nding optimal population
designs for within-individual covariance matrices discrimination and
parameter estimation in nonlinear mixed eects models. A compound optimality criterion is provided, which combines an estimation criterion and a discrimination criterion. We used the D-optimality criterion for parameter estimation, which maximizes the determinant of the Fisher information matrix. For discrimination, we propose a generalization of the T-optimality criterion for xed-eects models. Equivalence theorems are provided for these criteria. We illustrated the application of compound criteria with an example in a pharmacokinetic experiment.

En este artículo se considera el problema de encontrar diseños óptimos poblacionales para discriminación entre matrices de covarianza intraindividual y estimación de parámetros en modelos de efectos mixtos no lineales. Se propone un criterio compuesto que combina un criterio para estimación y otro para discriminación. Para estimación se usa el criterio de D-optimalidad el cual maximiza el determinante de la matriz de información de Fisher. Para discriminación se propone una generalización del criterio de T-optimalidad para modelos de efectos jos. Para estos criterios se proporcionan los respectivos teoremas de equivalencia. La aplicación del criterio compuesto se ilustra con un ejemplo en un experimento de farmacocinética.

References

Atkinson, A. C. (2008), 'DT-Optimum Designs for Model Discrimination and Parameter Estimation', Journal of Statistical Planning and Inference 138, 56-64.

Atkinson, A. C., Donev, A. N. & Tobias, R. D. (2007), Optimum Experimental Designs, with SAS, first edn, Oxford, New York.

Atkinson, A. C. & Fedorov, V. V. (1975), 'The Design of Experiments for Discriminating Between Two Rival Models', Biometrika 62(1), 57-70.

Castañeda, M. E. & López-Ríos, V. I. (2016), 'Optimal Population Designs for Discrimination Between Two Nested Nonlinear Mixed Effects Models', Ciencia en Desarrollo 7(1), 71-81.

Chernoff, H. (1953), 'Locally Optimal Designs for Estimating Parameters', The Annals of Mathematical of Statistics 24(4), 586-602.

Davidian, M. & Giltinan, D. M. (1995), Nonlinear Models for Repeated Measurement Data, rst edn, Chapman & Hall, London.

Demidenko, E. (2004), Mixed Models: Theory and Applications, first edn, John Wiley & Sons, Inc, New York.

Gagnon, R. & Leonov, S. (2005), 'Optimal Population Designs for PK Models with Serial Sampling', Journal of Biopharmaceutical Statistics 15(1), 143-163.

Kuczewski, B., Bogacka, B. & Ucinski, D. (2008), 'Optimum Designs for Discrimination Between Two Nonlinear Multivariate Dynamic Mixed-Effects Models', Biometrical Letters 45(1), 1-28.

López-Fidalgo, J., Tommasi, C. & Trandafir, P. C. (2007), 'An Optimal Experimental Design Criterion for Discriminating Between Non-Normal Models', Journal of the Royal Statistical Society: Series B 69, 231-242.

López, V. I. (2008), Diseños óptimos para estimación y discriminación en modelos no lineales, Tesis de Doctorado, Centro de Investigación en Matemáticas, CIMAT, México.

Mentré, F., Burtin, P., Merlé, Y., Bree, J., Mallet, A. & Steimer, J. (1995), 'Sparse-Sampling Optimal Designs in Pharmacokinetics and Toxicokinetics', DrugInformation Journal 29(3), 997-1019.

Mentré, F., Mallet, A. & Baccar, D. (1997), 'Optimal Designs in Random Effects Regression Models', Biometrika 84(2), 429-442.

Pinheiro, J. C. & Bates, D. M. (2000), Mixed-Effects Models in S and SPLUS, first edn, Springer-Verlag, New York.

R Development Core Team (2014), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org

Racine, A., Grieve, A., Fluhler, H. & Smith, A. (1986), 'Bayesian Methods in Practice Experiences in the Pharmaceutical Industry', Journal of the Royal Statistical Society 35(2), 93-150.

Tommasi, C. (2009), 'Optimal Designs for Both Model Discrimination and Parameter Estimation', Journal of Statistical Planning and Inference 139, 4123-4132.

Ucinski, D. & Bogacka, B. (2005), 'T-Optimum Designs for Discrimination Between Two Multiresponse Dynamic Models', Journal of the Royal Statistical Society: Series B 67, 3-18.

Vajjah, P. & Duffull, S. (2012), 'A Generalisation of T-optimality for Discriminating Between Competing Models With an Application to Pharmacokinetics Studies', Pharmaceuticals Statistics 11(6), 503-510.

Waterhouse, T., Redmann, S., Duffull, S. & Eccleston, J. (2005), 'Optimal Design for Model Discrimination and Parameter Estimation for Itraconazole Population Pharmacokinetics in Cystic Fibrosis Patients', Journal of Pharmacokinetics and Pharmacodynamics 32(3), 521-545.

How to Cite

APA

López-Ríos, V. I. and Castañeda-López, M. E. (2020). An Optimal Design Criterion for Within-Individual Covariance Matrices Discrimination and Parameter Estimation in Nonlinear Mixed Effects Models. Revista Colombiana de Estadística, 43(2), 127–141. https://doi.org/10.15446/rce.v43n2.81938

ACM

[1]
López-Ríos, V.I. and Castañeda-López, M.E. 2020. An Optimal Design Criterion for Within-Individual Covariance Matrices Discrimination and Parameter Estimation in Nonlinear Mixed Effects Models. Revista Colombiana de Estadística. 43, 2 (Jul. 2020), 127–141. DOI:https://doi.org/10.15446/rce.v43n2.81938.

ACS

(1)
López-Ríos, V. I.; Castañeda-López, M. E. An Optimal Design Criterion for Within-Individual Covariance Matrices Discrimination and Parameter Estimation in Nonlinear Mixed Effects Models. Rev. colomb. estad. 2020, 43, 127-141.

ABNT

LÓPEZ-RÍOS, V. I.; CASTAÑEDA-LÓPEZ, M. E. An Optimal Design Criterion for Within-Individual Covariance Matrices Discrimination and Parameter Estimation in Nonlinear Mixed Effects Models. Revista Colombiana de Estadística, [S. l.], v. 43, n. 2, p. 127–141, 2020. DOI: 10.15446/rce.v43n2.81938. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/81938. Acesso em: 28 mar. 2025.

Chicago

López-Ríos, Victor Ignacio, and María Eugenia Castañeda-López. 2020. “An Optimal Design Criterion for Within-Individual Covariance Matrices Discrimination and Parameter Estimation in Nonlinear Mixed Effects Models”. Revista Colombiana De Estadística 43 (2):127-41. https://doi.org/10.15446/rce.v43n2.81938.

Harvard

López-Ríos, V. I. and Castañeda-López, M. E. (2020) “An Optimal Design Criterion for Within-Individual Covariance Matrices Discrimination and Parameter Estimation in Nonlinear Mixed Effects Models”, Revista Colombiana de Estadística, 43(2), pp. 127–141. doi: 10.15446/rce.v43n2.81938.

IEEE

[1]
V. I. López-Ríos and M. E. Castañeda-López, “An Optimal Design Criterion for Within-Individual Covariance Matrices Discrimination and Parameter Estimation in Nonlinear Mixed Effects Models”, Rev. colomb. estad., vol. 43, no. 2, pp. 127–141, Jul. 2020.

MLA

López-Ríos, V. I., and M. E. Castañeda-López. “An Optimal Design Criterion for Within-Individual Covariance Matrices Discrimination and Parameter Estimation in Nonlinear Mixed Effects Models”. Revista Colombiana de Estadística, vol. 43, no. 2, July 2020, pp. 127-41, doi:10.15446/rce.v43n2.81938.

Turabian

López-Ríos, Victor Ignacio, and María Eugenia Castañeda-López. “An Optimal Design Criterion for Within-Individual Covariance Matrices Discrimination and Parameter Estimation in Nonlinear Mixed Effects Models”. Revista Colombiana de Estadística 43, no. 2 (July 1, 2020): 127–141. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/81938.

Vancouver

1.
López-Ríos VI, Castañeda-López ME. An Optimal Design Criterion for Within-Individual Covariance Matrices Discrimination and Parameter Estimation in Nonlinear Mixed Effects Models. Rev. colomb. estad. [Internet]. 2020 Jul. 1 [cited 2025 Mar. 28];43(2):127-41. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/81938

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

  • Usage
  • SciELO - Full Text Views: 127
  • SciELO - Abstract Views: 30
  • Captures
  • Mendeley - Readers: 1

Article abstract page views

3041

Downloads