Published
An Optimal Design Criterion for Within-Individual Covariance Matrices Discrimination and Parameter Estimation in Nonlinear Mixed Effects Models
Un criterio de diseño optimal para discriminación de matrices de covarianza intra-individual y estimación de parámetros en modelos de efectos mixtos no lineales
DOI:
https://doi.org/10.15446/rce.v43n2.81938Keywords:
Compound criteria, D-optimality, Mixed eects models, Optimal designs, T-optimality (en)Criterios compuestos, Diseños óptimos, D-optimalidad, Modelo de efectos mixtos, T-optimalidad (es)
Downloads
In this paper, we consider the problem of nding optimal population
designs for within-individual covariance matrices discrimination and
parameter estimation in nonlinear mixed eects models. A compound optimality criterion is provided, which combines an estimation criterion and a discrimination criterion. We used the D-optimality criterion for parameter estimation, which maximizes the determinant of the Fisher information matrix. For discrimination, we propose a generalization of the T-optimality criterion for xed-eects models. Equivalence theorems are provided for these criteria. We illustrated the application of compound criteria with an example in a pharmacokinetic experiment.
En este artículo se considera el problema de encontrar diseños óptimos poblacionales para discriminación entre matrices de covarianza intraindividual y estimación de parámetros en modelos de efectos mixtos no lineales. Se propone un criterio compuesto que combina un criterio para estimación y otro para discriminación. Para estimación se usa el criterio de D-optimalidad el cual maximiza el determinante de la matriz de información de Fisher. Para discriminación se propone una generalización del criterio de T-optimalidad para modelos de efectos jos. Para estos criterios se proporcionan los respectivos teoremas de equivalencia. La aplicación del criterio compuesto se ilustra con un ejemplo en un experimento de farmacocinética.
References
Atkinson, A. C. (2008), 'DT-Optimum Designs for Model Discrimination and Parameter Estimation', Journal of Statistical Planning and Inference 138, 56-64.
Atkinson, A. C., Donev, A. N. & Tobias, R. D. (2007), Optimum Experimental Designs, with SAS, first edn, Oxford, New York.
Atkinson, A. C. & Fedorov, V. V. (1975), 'The Design of Experiments for Discriminating Between Two Rival Models', Biometrika 62(1), 57-70.
Castañeda, M. E. & López-Ríos, V. I. (2016), 'Optimal Population Designs for Discrimination Between Two Nested Nonlinear Mixed Effects Models', Ciencia en Desarrollo 7(1), 71-81.
Chernoff, H. (1953), 'Locally Optimal Designs for Estimating Parameters', The Annals of Mathematical of Statistics 24(4), 586-602.
Davidian, M. & Giltinan, D. M. (1995), Nonlinear Models for Repeated Measurement Data, rst edn, Chapman & Hall, London.
Demidenko, E. (2004), Mixed Models: Theory and Applications, first edn, John Wiley & Sons, Inc, New York.
Gagnon, R. & Leonov, S. (2005), 'Optimal Population Designs for PK Models with Serial Sampling', Journal of Biopharmaceutical Statistics 15(1), 143-163.
Kuczewski, B., Bogacka, B. & Ucinski, D. (2008), 'Optimum Designs for Discrimination Between Two Nonlinear Multivariate Dynamic Mixed-Effects Models', Biometrical Letters 45(1), 1-28.
López-Fidalgo, J., Tommasi, C. & Trandafir, P. C. (2007), 'An Optimal Experimental Design Criterion for Discriminating Between Non-Normal Models', Journal of the Royal Statistical Society: Series B 69, 231-242.
López, V. I. (2008), Diseños óptimos para estimación y discriminación en modelos no lineales, Tesis de Doctorado, Centro de Investigación en Matemáticas, CIMAT, México.
Mentré, F., Burtin, P., Merlé, Y., Bree, J., Mallet, A. & Steimer, J. (1995), 'Sparse-Sampling Optimal Designs in Pharmacokinetics and Toxicokinetics', DrugInformation Journal 29(3), 997-1019.
Mentré, F., Mallet, A. & Baccar, D. (1997), 'Optimal Designs in Random Effects Regression Models', Biometrika 84(2), 429-442.
Pinheiro, J. C. & Bates, D. M. (2000), Mixed-Effects Models in S and SPLUS, first edn, Springer-Verlag, New York.
R Development Core Team (2014), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org
Racine, A., Grieve, A., Fluhler, H. & Smith, A. (1986), 'Bayesian Methods in Practice Experiences in the Pharmaceutical Industry', Journal of the Royal Statistical Society 35(2), 93-150.
Tommasi, C. (2009), 'Optimal Designs for Both Model Discrimination and Parameter Estimation', Journal of Statistical Planning and Inference 139, 4123-4132.
Ucinski, D. & Bogacka, B. (2005), 'T-Optimum Designs for Discrimination Between Two Multiresponse Dynamic Models', Journal of the Royal Statistical Society: Series B 67, 3-18.
Vajjah, P. & Duffull, S. (2012), 'A Generalisation of T-optimality for Discriminating Between Competing Models With an Application to Pharmacokinetics Studies', Pharmaceuticals Statistics 11(6), 503-510.
Waterhouse, T., Redmann, S., Duffull, S. & Eccleston, J. (2005), 'Optimal Design for Model Discrimination and Parameter Estimation for Itraconazole Population Pharmacokinetics in Cystic Fibrosis Patients', Journal of Pharmacokinetics and Pharmacodynamics 32(3), 521-545.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2020 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).