Published
Extended Lindley Distribution with Applications
Distribución Lindley transmutada de rango cúbico con aplicaciones
DOI:
https://doi.org/10.15446/rce.v45n1.93548Keywords:
Lindley Distribution, Cubic Rank Transmutation Map, Reliability Analysis, Parameter Estimation (en)Análisis de foabilidad, Distribución Lindley, Estimación de parámetros, Mapa de transmutación de rango cúbico (es)
Downloads
In this work, we propose a three-parameter generalized Lindley distribution using the cubic rank transmutation map approach by Granzotto, Louzada & Balakrishnan (2017). We derive expressions for several mathematical properties including moments and moment generating function, mean deviation, probability weighted moments, quantile function, reliability analysis, and order statistics. We conducted a simulation study to assess the performance of the maximum likelihood estimation procedure for estimating model parameters. The flexibility of the proposed model is illustrated by analyzing two real data sets.
En este trabajo, proponemos una distribución generalizada Lindley con tres parámetros utilizando el enfoque de mapa de transmutación de rango cúbico de Granzotto et al. (2017). Derivamos expresiones para varias propiedades matemáticas, incluyendo momentos y función generadora de momentos, desviación media, momentos ponderados por probabilidad, función cuantil, análisis de conabilidad y estadísticas de orden. Se realizó un estudio de simulación para evaluar el rendimiento del procedimiento de estimación de máxima verosimilitud para estimar los parámetros del modelo. La exibilidad del modelo propuesto se ilustra mediante el análisis de dos conjuntos de datos reales.
References
Alizadeh, M., Merovci, F. & Hamedani, G. G. (2017), ‘Generalized transmuted family of distributions: properties and applications’, Hacettepe Journal of Mathematics and Statistics 46(4), 645– 667. DOI: https://doi.org/10.15672/HJMS.201610915478
Ascher, H. & Feingold, H. (1984), Repairable Systems Reliability Modelling, Inference, Misconceptions and Their Causes, Marcel Dekker, New York.
Asgharzadeh, A., Nadarajah, S. & Sharafi, F. (2018), ‘Weibull Lindley distribution’, REVSTAT Statistical Journal 16(1), 87–113.
Ball, C., Rimal, B. & Chhetri, S. (2021), ‘A New Generalized Cauchy Distribution with an Application to Annual One Day Maximum Rainfall Data’, Statistics, Optimization & Information Computing 9(1), 123–136. DOI: https://doi.org/10.19139/soic-2310-5070-1000
Bhatti, F., Hamedani, G. G., Najibi, S. N. & Ahmad, M. (2020), ‘Cubic Rank Transmuted Modified Burr III Distribution: Development, Properties, Characterizations and Application’, Journal of Data Science 18(2), 299–318. DOI: https://doi.org/10.6339/JDS.202004_18(2).0005
Bjerkedal, T. (1960), ‘Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli’, American Journal of Hygiene pp. 130–148. DOI: https://doi.org/10.1093/oxfordjournals.aje.a120129
Celik, N. (2018), ‘Some cubic rank transmuted distributions’, Journal of Applied Mathematics, Statistics and Informatics 14(2), 27–43. DOI: https://doi.org/10.2478/jamsi-2018-0011
Chhetri, S. B., Akinsete, A. A., Aryal, G. & Long, H. (2017), ‘The Kumaraswamy transmuted Pareto distribution’, Journal of Statistical Distributions and Applications 4(11). DOI: https://doi.org/10.1186/s40488-017-0065-4
Chhetri, S. B., Long, H. & Aryal, G. (2017), ‘The Beta Transmuted Pareto Distribution: Theory and Applications’, Journal of Statistics Applications & Probability 6(2), 243–258. DOI: https://doi.org/10.18576/jsap/060201
Deshpande, J. V., Mukhopadhyay, M. & Naik Nimbalkar, U. V. (2000), ‘Bayesian Nonparametric Estimation of Intensity Functions using Markov Chain Monte Carlo Method’, Calcutta Statistical Association Bulletin 50(3-4), 223–235. DOI: https://doi.org/10.1177/0008068320000309
Ghitany, M. E., Alqallaf, F., Al-Mutairi, D. K. & Husain, H. A. (2011), ‘A twoparameter weighted Lindley distribution and its applications to survival data’, Mathematics and Computers in Simulation 81(6), 1190–1201. DOI: https://doi.org/10.1016/j.matcom.2010.11.005
Ghitany, M. E., Atieh, B. & Nadarajah, S. (2008), ‘Lindley distribution and its Application’, Mathematics Computing and Simulation 78(4), 493–506. DOI: https://doi.org/10.1016/j.matcom.2007.06.007
Gilchrist, W. G. (2000), Statistical Modelling with Quantile Functions, Chapman & Hall/CRC. DOI: https://doi.org/10.1201/9781420035919
Granzotto, D. C. T., Louzada, F. & Balakrishnan, N. (2017), ‘Cubic rank transmuted distributions: inferential issues and applications’, Journal of Statistical Computation and Simulation 87(14), 2760–2778. DOI: https://doi.org/10.1080/00949655.2017.1344239
Greenwood, J. A., Landwehr, J. M., Matalas, N. C. & Wallis, J. R. (1979), ‘Probability weighted moments: Definition and relation to parameters of several distributions expressible in inverse form’, Water Resources Research 15(5), 1049–1054. DOI: https://doi.org/10.1029/WR015i005p01049
Ieren, T. G. & Abdullahi, J. (2020), ‘A Transmuted Normal Distribution: Properties and Applications’, Equity Journal of Science and Technology 7(1), 16–35.
Khan, M. S., King, R. & Hudson, I. L. (2014), ‘Characterisations of the transmuted inverse Weibull distribution’, ANZIAM Journal 55, C197–C217. DOI: https://doi.org/10.21914/anziamj.v55i0.7785
Khokhar, J., Khalil, R. & Shahid, N. (2020), ‘Zografos Balakrishnan Power Lindley Distriution’, Journal of Data Science 18(2), 279–298. DOI: https://doi.org/10.6339/JDS.202004_18(2).0004
Kumar, C. S. & Jose, R. (2018), ‘On double Lindley distribution and some of its properties’, American Journal of Mathematical and Management Sciences 38(1), 23–43. DOI: https://doi.org/10.1080/01966324.2018.1480437
Lindley, D. V. (1958), ‘Fiducial Distributions and Bayes’ Theorem’, Journal of the Royal Statistical Society. Series B (Methodological) 20(1), 102–107. DOI: https://doi.org/10.1111/j.2517-6161.1958.tb00278.x
Meeker, W. Q. & Escobar, L. A. (1998), Statistical Methods for Reliability Data, John Wiley & Sons.
Merovci, F. & Sharma, V. K. (2014), ‘The Beta- Lindley Distribution: Properties and Applications’, Mathematics and Computers in Simulation 2014. DOI: https://doi.org/10.1155/2014/198951
Nadarajah, S., Bakouch, H. S. & Tahmasbi, R. (2011), ‘A generalized Lindley distribution’, Sankhya 73, 331–359. DOI: https://doi.org/10.1007/s13571-011-0025-9
Nofal, Z., Afify, A., Yousof, H. & Cordeiro, G. (2017), ‘The generalized transmuted-g family of distributions’, Communications in Statistics-Theory and Methods 46(8), 41194136. DOI: https://doi.org/10.1080/03610926.2015.1078478
Pararai, M., Warahena-Liyanage, G. & Oluyede, B. O. (2015), ‘Extended Lindley Poisson distribution’, Journal of Mathematics and Statistical Science 1(5), 167–198.
Pekalp, H., Aydogdu, H. & Karabulut, I. (2014), ‘Investigation of trend by graphical methods in counting processes’, Communications Faculty of Science University of Ankara Series A1 Mathematics and Statistics 63(1), 73–83. DOI: https://doi.org/10.1501/Commua1_0000000706
R Core Team (2020), ‘R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria’. https://www.Rproject.org/
Riffi, M. I. (2019), ‘Higher Rank Transmuted Families of Distributions’, IUG Journal of Natural Studies Peer-reviewed Journal of Islamic University-Gaza 27(2), 50–62.
Sankaran, M. (1970), ‘275 note: The discrete Poisson- Lindley distribution’, Biometrics 26(1), 145–149. DOI: https://doi.org/10.2307/2529053
Shanker, R., Fesshaye, H. & Selvaraj, S. (2016), ‘On Modeling of Lifetime Data Using Akash, Shanker, Lindley and Exponential Distributions’, Biometrics and Biostatistics International Journal 3(6), 56–62. DOI: https://doi.org/10.15406/bbij.2016.03.00084
Shanker, R., Sharma, S. & Shanker, R. (2013), ‘A two-parameter Lindley distribution for modeling waiting and survival times data’, Applied Mathematics 4(2), 363–368. DOI: https://doi.org/10.4236/am.2013.42056
Shaw, W. & Buckley, I. (2007), ‘The alchemy of probability distributions: beyond Gram-Charlier expansions and a skew-kurtotic-normal distribution from a rank transmutation map’, Research report pp. 2760–2778.
Shaw, W. & Buckley, I. (2009), ‘The alchemy of probability distributions: beyond Gram-Charlier expansions and a skew-kurtotic-normal distribution from a rank transmutation map’, Conference on Computational Finance, IMA, 09010434, Research report .
Zaninetti, L. (2019), ‘The truncated Lindley distribution with applications in astrophysics’, Galaxies 7(2). DOI: https://doi.org/10.3390/galaxies7020061
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Guillermo Martínez-Flórez, Barry C. Arnold, Héctor W. Gómez. (2024). A Bivariate Power Lindley Survival Distribution. Mathematics, 12(21), p.3334. https://doi.org/10.3390/math12213334.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).